IOURNAL OF ENVIRONMENTAL SCIENCES XX (2016) XXX-XXX

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/jes

www.jesc.ac.cn

Effect of reclaimed water effluent on bacterial community structure in the Typha angustifolia L. rhizosphere soil of urbanized riverside wetland, China

- Xingru Huang^{1,2}, Wei Xiong⁴, Wei Liu^{1,2}, Xiaoyu Guo^{1,2,3,*}
- 1. College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China. E-mail: huangxingru@126.com
- 2. Beijing Municipal Key Laboratory of Resources Environment and GIS, Beijing 100048, China 6
- 3. Urban Environmental Processes and Digital Modeling Laboratory, Beijing 100048, China
- 4. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

ARTICLE INFO

18 Article history:

12

19

38

49

48

43

31

32

33

34

35

36 4番

48

49

50

51

52

53

54

Received 24 February 2016

Revised 16 May 2016 20

26 Accepted 2 June 2016

Available online xxxx 27

23 Keywords: $\frac{37}{4}$

Reclaimed water 38

16S rRNA gene clone library

Bacterial community structure

ABSTRACT

In order to evaluate the impact of reclaimed water on the ecology of bacterial communities in the Typha angustifolia L. rhizosphere soil, bacterial community structure was investigated using a combination of terminal restriction fragment length polymorphism and 16S rRNA gene clone library. The results revealed significant spatial variation of bacterial communities along the river from upstream and downstream. For example, a higher relative abundance of γ -Proteobacteria, Firmicutes, Chloroflexi and a lower proportion of β-Proteobacteria and ε-Proteobacteria was detected at the downstream site compared to the upstream site. Additionally, with an increase of the reclaimed water interference intensity, the rhizosphere bacterial community showed a decrease in taxon richness, evenness and diversity. The relative abundance of bacteria closely related to the resistant of heavy-metal was markedly increased, while the bacteria related for carbon/nitrogen/phosphorus/sulfur cycling wasn't strikingly changed. Besides that, the pathogenic bacteria markedly increased in the downstream rhizosphere soil since reclaimed water supplement, while the possible plant growth-promoting rhizobacteria obviously reduced in the downstream sediment. Together these data suggest cause and effect between reclaimed water input into the wetland, shift in bacterial communities through habitat change, and alteration of capacity for biogeochemical cycling of contaminants.

© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Introduction

Centralized reclaimed water treatment plants (RWTPs) are one of the most common systems for the treatment of domestic wastewater in highly urbanized areas with high population densities in Beijing, China. Therefore, RWTPs effluent represents a significant component of the supplement water of river ecosystems in Beijing. Currently, the use

of reclaimed water in Beijing amounts to $2.3 \times 10^8 \,\mathrm{m}^3$, 55 1.5×10^8 m³ (65.2%) of which are used by lakes and rivers. 56 However, numerous studies have documented that reclaimed 57 water is rich in nitrogen, phosphorus and other nutrients; 58 also, as a result of the slow stream flow of urban rivers, their 59 long update cycle, and the single body of water ecosystem 60 structure, the water column potentially has a higher risk of 61 eutrophication and temporary oxygen deficits (Zhou et al., Q4

http://dx.doi.org/10.1016/j.jes.2016.06.022

1001-0742/© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Corresponding author. E-mail: xiaoyucnu@126.com (Xiaoyu Guo).

63

64

65

66

67

69

70

71

72

73

74

75

76 77

78

81

82

83

84

85

87 88

90

91

93

94

96

97

98

99

100

101

102

103

105

106

Q6

109

110

111

112

113

114

115

118

119

121

122

2006; Meng et al., 2011). In addition, domestic wastewater is normally anthropogenic, such as municipal and hospital producing wastewater, which contains residual Pharmaceutical and Personal Care Products (PPCPs), and biologically active metabolites. These contaminants can mix into the natural water cycle through reclaimed water supplement (Yu et al., 2011; Tong and Wei, 2012; Knapp et al., 2012). Reclaimed water was one of the chlorine sources, which could produce organic pollutant, substitution reactions, disinfection byproducts, chloroform, carbon tetrachloride, etc. Thus, reclaimed water is an important source of water transmitted antibiotics and cross resistance genes from disinfection byproduct, which result in higher potential risk to human health (Dong et al., 2010).

The quality of reclaimed water affects the functions and biological processes of receiving river directly (Wassen et al., 1992), particularly when it enters waterways during periods of low natural flow. The urban artificial wetland, considered as a natural alternative to technical methods of wastewater treatment, which can effectively remove nitrogen, phosphorus, heavy metals oxide, various organic substances and pathogens, and reduce BOD and TSS content in water (Thurston et al., 2001; Zhao et al., 2007). Thus, urban artificial wetlands have gradually been widely used in improving water quality in urban lake and river landscapes (Cui et al., 2011). Many studies had pointed out that the interaction matrix, aquatic plants and microorganisms in the wetland system was the main mechanisms of effluent purification (Toyama et al., 2009). Among them, microorganisms play an imperative role in the process of purification, especially the plant rhizosphere bacteria. Wetland plants had a special ability called the "rhizosphere effect," which allows microbes in the plant rhizosphere to enhance the carrying capacity of constructed wetlands (Xiang et al., 2004). The rhizosphere bacterial communities propagate at high speed, with high abundances and strong metabolizing abilities (Feng et al., 2012), which play a very important role in the processes of removing, fixing and conversion of nitrogen, phosphorus and other organic/inorganic matters, including heavy metal removal, etc. (Jing and Yang, 2004; Zhang et al., 2007; Nicomrat et al., 2008; Li, 2012). Therefore, rhizosphere bacterial communities are the main force involved in the degradation of pollutants and play an important role in maintaining the ecological balance and achieving ecological purification of wetland systems. Characteristics of microbial biomass, activity and community composition in constructed wetlands can be directly affected by hydraulic conditions, wastewater properties, including substrate and nutrient quality and availability, filter material or soil type, plants, and other environmental factors (Truu et al., 2009). Therefore, wetland plant rhizosphere microbial characteristics can sensitively reflect the status of plant and water quality, which are considered ideal indicators of aquatic ecosystems and have been extensively used to assess the degree of toxicity imposed by various pollutants. To the best of our knowledge, most studies have focused on the impacts of wastewater treatment plants (WWTPs) effluent on bacterial communities in the water column and sediment of receiving river (Wakelin et al., 2008; Drury et al., 2013). But few studies have investigated wetland plant rhizosphere bacteria community under reclaimed water disturbance condition.

We aimed to characterize the effect of RWTPs effluent on 123 the structure of bacterial communities in the rhizosphere 124 bacterial community of Typha angustifolia L. in urbanized 125 riverside wetland in our study. A combination of terminal 126 restriction fragment length polymorphism (T-RFLP) and 127 16S rRNA library technique was used to investigate the 128 diversity, abundance and function of bacterial community in 129 T. angustifolia rhizosphere samples collected from near the 130 reclaimed water outfall, 300 m upstream the RWTP outfall 131 and 2000 m downstream the RWTP outfall. The two methods 132 exhibit different properties in the analysis of community 133 structure. T-RFLP which is widely applied to the fields of 134 biodiversity analysis and comparison of microbial community 135 has crucial theoretical meaning and practical applied value 136 (Wang et al., 2012). However, it is not applicable to describe 137 community composition because of some shortcomings. For Q7 example, phylogenetic identification is problematic because 139 some terminal restriction fragments (T-RTs) can't match the 140 corresponding species or genus of bacteria from database 08 (Marsh, 1999). Conversely, the 16S rRNA clone library method 142 is not suitable for analyses of community diversity since the 143 limitation of conversion efficiency. However, for community 144 composition analysis, the 16S rRNA clone library method, 145 which has the highest resolution ability, appears to be 146 suitable (Guo et al., 2015). Narrowleaf cattail (T. angustifolia) is 147 one of the most common plants in constructed wetlands 148 used for wastewater treatment. Earlier studies have shown 149 that cattails' endophytic bacteria can assimilate nutrients 150 (Whitacre, 2012), heavy metals (Demirezend and Aksoy, 2004) Q9 and phytoremediate eutrophic water bodies (Cristina et al., Q10 2009) in the constructed wetland or semi-natural treatment 153 wetland. But no study has investigated the effect of 154 reclaimed water on the rhizosphere bacterial community of 155 T. angustifolia in urbanized riverside wetland. Date from this 156 study can provide better understanding of the interactions 157 between reclaimed water variables and complex bacterial 158 communities in wetland systems, as well as useful informa- 159 tion of indigenous populations with potential application to 160reclaimed water purification. It also can provide a scientific 161 reference to maintain the ecological balance and construct 162 the high-efficiency wetland purification system.

1. Materials and methods

1.1. Description of study area

The Beijing Yongding River artificial wetland was 5.24-km-long, 167 which geographically begins in the town of Sanjiadian, and 168 extends to Mayu Village, located in Mentougou District. This 169 artificial wetland mainly uses reclaimed water as a supplemen- 170 tal water source to sustain the water inflow in the wetland 171 culverts. The mean water depth in the study area is 1.5–2.5 m. 172 Water storage capacity is $1.6\times10^6~\text{m}^3$. The average annual 173 rainfall of whole watershed is about 556–560 mm, and rainfall 174 mainly concentrates in 6–9 months. To form the wetland 175 landscape, a dam of Sanjiadian reservoir was set up in the 176 upstream of the drainage outlet. Two major reclaimed water 177 outfalls (Zhongmensi ditch outfall and Gaojing canal outfall) are 178 located in approximately 4000 m downstream of the reservoir 179

165

166

Please cite this article as: Huang, X., et al., Effect of reclaimed water effluent on bacterial community structure in the Typha angustifolia L. rhizosphere soil of urbanized river..., J. Environ. Sci. (2016), http://dx.doi.org/10.1016/j.jes.2016.06.022

Download English Version:

https://daneshyari.com/en/article/5754278

Download Persian Version:

https://daneshyari.com/article/5754278

<u>Daneshyari.com</u>