ARTICLE IN PRESS

JOURNAL OF ENVIRONMENTAL SCIENCES XX (2016) XXX-XXX

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/jes

www.jesc.ac.cn

Water softening by induced crystallization in fluidized bed

22 Yuefang Chen*, Rong Fan, Danfeng An, Yujie Cheng, Hazel Tan

School of Civil and Environment Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China. E-mail: yuefangchen@vip.sina.com

ARTICLE INFO

94 Article history:

3

5

18

19

 $\underline{30}$

33

 $\frac{35}{2}$

26

27

28 29

38

42

43

44

 $\frac{45}{46}$

47

48

49

50

51

52

53

54

55

56

57

10 Received 15 January 2016

16 Revised 15 June 2016

17 Accepted 1 August 2016

Available online xxxx

Keywords:

31 Fluidized bed

39 Induced crystallization

Hardness

34 Softening capability

Quartz sand

ABSTRACT

Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60 L/hr, a fixed-bed height of 0.5 m, pH value of 9.5, quartz sand nuclear diameter of 0.2–0.4 mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60 mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process.

© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.

Introduction

Water hardness can be attributed to the presence of certain ions in water which can easily form undissolved salts (Teixeira et al., 2012). Some of the common ions include calcium ions, magnesium ions, ferrous ions, manganese ions and aluminum ions. Treatment processes often include the removal of these ions due to certain water quality requirements (Apell and Boyer, 2010).

In industries, circulating water used for cooling comprises the largest percentage in water utilization. Strict requirements exist even for circulating water as the quality of the water may also affect the overall industrial process used. An example of a situation that is brought about by uncontrolled cooling water quality is the formation of salt crusts on the surface of heat exchangers. Various dissolved scaling salts may exist in cooling water. If these salt ions are not removed,

certain physical and chemical conditions in the system may 58 cause an increase in the concentration beyond saturation 59 point, resulting in crystallization of various salt ions (Esfahani 60 and Yoo, 2014). These ions adhere to the surface of heat 61 exchangers and other equipment, forming salt crusts and 62 requiring maintenance. Salt crusts include calcium carbonate, 63 calcium sulfate and calcium metasilicate and so on, of which, 64 calcium carbonate is the most common and hazardous for 65 water systems. Nowadays, there are various methods used to 66 prevent calcium carbonate scale formation, such as softening 67 through heating, seeding, ion exchange, nanofiltration, and 68 electro-deionization (Omar et al., 2010). In the field of water 69 softening treatment, lime soda softening process is the most 70 common one in application. This is due to the numerous 71 advantages of the process, such as, extensive sources of lime, 72 easy disposal of solid waste, no pollution to the natural water 73 bodies, and a big decrease of organic matter, silicate and iron 74

http://dx.doi.org/10.1016/j.jes.2016.08.014

1001-0742/© 2016 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Please cite this article as: Chen, Y., et al., Water softening by induced crystallization in fluidized bed, J. Environ. Sci. (2016), http://dx.doi.org/10.1016/j.jes.2016.08.014

^{*} Corresponding author.

75

76 77

78

79

81

82

84

85

86

87

88

90

91

93

94

95

96

97

98

99 100

102

103

105

106

107

108

109

110

111

112

113

114

115

116

117

118

120

121

122

123

124

125

126

127

139

131

132

in effluent. However, there are disadvantages when using the traditional lime softening method due to the generation of high-moisture sludge which is also hard to sediment. Generation of such sludge is undesirable as it means additional dewatering treatments not to mention that dealing with dewatered sludge has already been an urgent problem for national governments for a long time now (Indarawis and Boyer, 2013; Chehayeb et al., 2014). Therefore, a new kind of treatment method is required to remove water hardness and at the same time, minimize the generation of sludge.

Segev et al. (2013) modeled a fluidized bed system maintaining a high alkaline environment. With this, calcium ion in solution was induced to precipitate as calcium carbonate. Then, carbon dioxide was utilized to strip calcium carbonate from the system, thereby reducing water hardness. Currently, for precipitation from solution, evidences have shown that precipitation occurs more when certain amount of tiny particles already exist or form in the solution (Da Silva et al., 2014). Nowadays, the method of fluidized induced crystallization/precipitation is being used. This method combines the technology of fluid-bed and induced crystallization precipitation technology. The process operation just utilizes fluidized bed which has a certain number of induced crystal nuclei, and then, the precipitant which could form insoluble matters with ions is added, having an effect of purifying water (Comstock and Boyer, 2014). Kim van Schagen et al. paved small pellets on fluidized bed, and used the advantage of these pellets to enhance the water softening capability by fluidized bed. Moreover, evidences showed that it was possible to keep the reactor at desired operational parameters (pellet size and bed height) under varying operational conditions in a simulation experiment. In this way, the cost of pellet softening is reduced and the situation of irregularities could be prevented. However, the potential cost limited further development of this technique because of the addition of the induced crystal nucleus (van Schagen et al., 2008; Segev et al., 2011).

Quartz sand is a kind of silicate mineral which is hard, wear-proof and has stable chemical properties. Furthermore, it is an irreplaceably important raw material of fireproofing, glass-making and building industries because of the abundant sources and low cost. Taking some quartz sand with specific proportion and particle size into wastewater and keeping it in fluidized state by adjusting the rate of inflow, quartz sand could serve as a crystal nucleus to induce precipitation of insoluble matters on the surface. This shows that it has properties of good settling ability, high solid content, and good sludge dewatering ability. The precipitate could also be used as building materials. Compared with traditional methods, the method of crystal quartz sand was easy to conduct and had a small floor coverage, which could reduce capital expenditure and running cost (Du et al., 2011). In this study, quartz sand was utilized as induced crystal nucleus, and the research combined the technology of fluidbed and induced crystallization precipitation to explore water softening process.

1. Materials and methods

This study was aimed to solve the problem of water hardness of the secondary effluent from Guodian Longshan Sewage Treatment Station. A laboratory-scale process was established to 133 optimize various parameters of fluidized induced crystallization/ 134 precipitation at metastable region. Factors affecting calcium 135 carbonate removal were also studied to determine the best 136 runtime conditions to achieve good effluent quality as required 137 by government standards. The test device and the experimental 138 flowchart are shown in Fig. 1.

The reactor is a 5.5 L cylindrical transparent Plexiglas 140 with a total height of 2400 mm including the conical bottom, 141 the cylindrical body and the water outlet. The column was 142 connected using screws and nuts and a rubber gasket was 143 added to prevent water leakage. Size 200 mesh filters were 144 placed at the top and bottom of the cylindrical column to 145 serve as the support for the quartz sand bed layer. The lower 146 part of the column is the fluidized bed and has a height of 2 m 147 and a diameter of 5 cm. The upper part of the column is used 148 for the water, having a height of 20 cm and an inner diameter 149 of 10 cm. The water inlet and dosing point inlet are located 150 at the bottom of the reactor. Water and softening agents 151 enter the column in a tangential direction. The water inlet 152 pipe is 8 cm. Located 30 cm with increments of 10 cm from 153 the bottom are 10 sampling ports. A 100 mesh screen was 154 installed near the outlet of the sampling port in order to 155 prevent outflow of quartz sand.

To start the process, the column was filled with washed 157 quartz sand. After loading the sand into the reactor, water 158 was pumped into the reactor from the bottom, bringing the 159 quartz sand to a fluidized state. Flow meters were installed to 160 control the influent flow. Once the fluidized state stabilized, 161 sodium carbonate solution was added into the reactor to serve 162 as the precipitant, with quartz sand as the induced nucleus. 163 This resulted in the formation of calcium carbonate precipi- 164 tate on the surface of quartz sand, achieving the purpose of 165 removing calcium ions. Treated water flowed out from the 166 upper part of the column.

In order to identify the optimum operating conditions, 168 experiments were done with controlled variables while 169 varying others. The experiments were performed at a room 170 temperature of 25°C, using water solution with calcium ion 171 concentration of 450 mg/L. The concentration used in the 172 research was chosen by taking the average value of the 173 concentration of calcium ions in actual water samples 174 obtained from the plant. Dynamic experiments were con-175 ducted to determine the effects of pH conditions, fixed-bed 176 height, particle size, flow rate, and reflux ratio on the 177 removal efficiency.

1.1. Wastewater samples

This study focused on the optimal conditions for the removal 180 of calcium ions from wastewater. Actual water samples from 181 the sewage treatment plant had high calcium ion concentra- 182 tions (ranging from 449 to 456 mg CaCO₃/L). In order to 183 simulate the conditions of the actual wastewater, an equally 184 high concentration of 450 mg CaCO₃/L was used during the 185 experimental phases to test the effects of pH conditions, 186 fixed-bed height, particle size, flow rate, and reflux ratio on 187 the removal rates.

179

Removal of water hardness is greatly affected by the pH of 189 the water system and the saturation pH. Because crystallization 190

Download English Version:

https://daneshyari.com/en/article/5754408

Download Persian Version:

https://daneshyari.com/article/5754408

<u>Daneshyari.com</u>