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Sub-pixel mapping (SPM) is a process for predicting spatially the land cover classes within mixed pixels. In
existing SPMmethods, the effect of point spread function (PSF) has seldom been considered. In this paper, a ge-
neric SPM method is developed to consider the PSF effect in SPM and, thereby, to increase prediction accuracy.
We first demonstrate that the spectral unmixing predictions (i.e., coarse land cover proportions used as input
for SPM) are a convolution of not only sub-pixels within the coarse pixel, but also sub-pixels from neighboring
coarse pixels. Based on this finding, a new SPM method based on optimization is developed which recognizes
the optimal solution as the one that when convolvedwith the PSF, is the same as the input coarse land cover pro-
portion. Experimental results on three separate datasets show that the SPM accuracy can be increased by consid-
ering the PSF effect.
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Keywords:
Land cover mapping
Downscaling
Sub-pixel mapping (SPM)
Super-resolution mapping
Point spread function (PSF)
Hopfield neural network (HNN)

1. Introduction

Mixed pixels are inevitable in remote sensing images and have
brought great challenges in land cover mapping. The spectral unmixing
technique has been studied for decades to estimate the proportions of
land cover classes within mixed pixels (Bioucas-Dias et al., 2012;
Heinz and Chang, 2001; Keshava and Mustard, 2002). The proportions
are at the same spatial resolution as the input images and cannot inform
the spatial distribution of classes within mixed pixels. To further esti-
mate the spatial distribution of land cover, sub-pixel mapping (SPM)
was developed as a post-processing analysis of spectral unmixing out-
puts. SPM divides mixed pixels to sub-pixels and predicts their class at-
tributes under the coherence constraint from prior spectral unmixing
predictions (i.e., coarse land cover class proportions). SPM transforms
the conventional pixel-level classification to a finer spatial resolution
hard classification (Atkinson, 1997), which can provide more explicit
thematic information (e.g., the boundaries between land cover classes
can be characterized by more pixels).

In recent decades, various SPM approaches have been developed. As
a post-processing step of spectral unmixing, two main groups of SPM
approaches can be identified. The first group considers the relation be-
tween sub-pixels and solutions are always produced based on defined
objectives. Based on the assumption of spatial dependence, the objec-
tive can be determined empirically as maximizing the spatial attraction
between sub-pixels (Makido and Shortridge, 2007), maximizing the

Moran's I (Makido et al., 2007) or minimizing the perimeter of the
area for each class (Villa et al., 2011). Based on prior knowledge, the ob-
jective can also be matching prior patterns extracted from training im-
ages, such as characterized by the semivariogram (Tatem et al., 2002),
two-point histogram (Atkinson, 2008) or landscape structure (Lin
et al., 2011). The SPM solutions of this type of methods are achieved
based on optimization, including the Hopfield neural network (HNN)
(Ling et al., 2010; Muad and Foody, 2012; Nguyen et al., 2011; Tatem
et al., 2001), pixel swapping algorithm (PSA) (Atkinson, 2005; Shen
et al., 2009; Xu and Huang, 2014), maximum a posteriori method
(Zhong et al., 2015), genetic algorithm (Li et al., 2015; Mertens et al.,
2003; Tong et al., 2016), and particle swarm optimization (PSO)
(Wang et al., 2012). Several iterations are involved for this group of
SPM methods and, thus, a relatively long computing time may be re-
quired. The second group of SPM methods considers the relation be-
tween sub-pixels and neighboring pixels. The coarse class proportions
within each pixel are used directly to characterize the relation between
it and sub-pixels and calculate thefine spatial resolution proportions for
sub-pixels. Under the coherence constraint, the sub-pixel classes are de-
termined by comparing the fine spatial resolution proportions. As the
coarse proportions are fixed for a given pixel, iterations (as in the first
method type) are not necessarily involved and SPM solutions can be
produced more quickly. Methods falling into this type include sub-
pixel/pixel spatial attraction model (SPSAM) (Mahmood et al., 2013;
Mertens et al., 2006; Xu et al., 2014), back-propagation neural
network-based algorithm (Gu et al., 2008; Zhang et al., 2008),
learning-based algorithm (Zhang et al., 2014), kriging (Verhoeye and
Wulf, 2002; Boucher and Kyriakidis, 2006) and radial basis function
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(RBF) (Wang et al., 2014a) interpolation. They can also be summarized
as the soft-then-hard SPM (STHSPM) algorithms, a concept proposed in
our previouswork (Wang et al., 2014b; Chen et al., 2015). In addition, to
reduce the uncertainty introduced by spectral unmixing, some SPM
methods that do not rely absolutely on coarse proportions were devel-
oped, including spatial-spectral methods (Ardila et al., 2011;
Kasetkasem et al., 2005; Li et al., 2014; Tolpekin and Stein, 2009), spatial
regularization (Ling et al., 2014; Zhang et al., 2015) and contouring
methods (Foody and Doan, 2007; Ge et al., 2014; Su et al., 2012).

In remote sensing images, the point spread function (PSF) effect ex-
ists ubiquitously. It means that the signal for a given pixel is a weighted
combination of contributions from within the pixel and also contribu-
tions from neighboring pixels (Townshend et al., 2000; Van der Meer,
2012). The PSF can brighten dark objects and darken bright objects ob-
served from the surface (Huang et al., 2002). It results in a fundamental
limit on the amount of information that remote sensing images can con-
tain (Manslow and Nixon, 2002). The PSF is a two-dimensional function
accounting for both the across-track and along-track directions
(Campagnolo and Montano, 2014; Radoux et al., 2016). The PSF effect
is caused mainly by the optics of the instrument, the detector and elec-
tronics, atmospheric effects, and image resampling (Huang et al., 2002;
Schowengerdt, 1997).

The PSF effect may not be an important issue for homogeneous re-
gions, but it is crucial for heterogeneous landscapes dominated by
mixed pixels. To the best of our knowledge, very few SPM methods
have considered the PSF effect in downscaling. For example, in most of
the existing SPMmethods, the coherence constraint from class propor-
tions is satisfied simply by fixing the number of sub-pixels for each class
within a single coarse pixel (i.e., the ideal square wave PSF is consid-
ered). The number of sub-pixels to be allocated to a classwithin a coarse
pixel is calculated as the product of the coarse class proportion within
the coarse pixel and the square of the zoom factor. Due to the PSF effect,
however, the coarse proportions estimated by spectral unmixing are ac-
tually a function, in part, of the neighboring coarse pixels. The uncer-
tainty in coarse proportions is propagated to the post-SPM process
where the coarse proportions contaminated by neighboring coarse
pixels are used as the coherence constraint. There is, therefore, a great
need for an approach accounting for the PSF effect in SPM to increase
the prediction accuracy.

There are two plausible solutions to cope with the PSF effect in SPM.
One is to consider the PSF effect in the pre-spectral unmixing process
and to estimate more reliable coarse proportions from observed multi-
spectral images. Based on the more reliable predictions, the PSF need
not be considered in SPM (i.e., the ideal square wave PSF can be consid-
ered in SPM, as in existing SPM approaches). However, spectral
unmixing is an ill-posed inverse problem. It is more complicated
when part of the neighboring coarse pixels (i.e., neighboring sub-
pixels) are involved as this technique is generally performed at the
pixel resolution. Currently, it is challenging to account for the PSF in
spectral unmixing and obtain reliable proportions. The alternative solu-
tion, considered here, is to model the PSF effect in the SPM process,
based on the proportions contaminated by neighboring coarse pixels.
This strategy is more feasible as SPM is conducted at the sub-pixel
scale and contributions from neighboring sub-pixels in PSF can be
straightforwardly modeled.

In this paper, to increase the SPM accuracy, the PSF effect is consid-
ered directly in the SPM process. Most SPMmethods need to first calcu-
late the number of sub-pixels for each class within each coarse pixel.
Based on these fixed numbers, the sub-pixel classes are then predicted.
This is not a problem for the ideal square wave PSF, as mentioned earli-
er. When considering the non-ideal PSF, however, the coarse propor-
tions are a convolution of the sub-pixel class values in a larger local
window, rather than the single coarse pixel in the ideal square-wave
PSF. In this case, the number of sub-pixels for each class in each coarse
pixel cannot be determined using only the single coarse proportion
(i.e., product of the coarse proportion and the square of the zoom factor,

as in existing SPMmethods), and it actually cannot be calculated explic-
itly. In this case, SPM methods such as the STHSPM algorithms are not
suitable choices. A plausible solution to this issue is to convolve the
fine spatial resolution SPM realizationwith the PSF and compare the es-
timated proportion with the actual coarse proportion, and use the error
to guide further updating of the current realization. The iteration-based
HNN is amethod of this type. Therefore, in this paper, theHNN is used to
reduce the uncertainty in SPM introduced by the PSF effect.

The remainder of this paper is organized into four sections. Section 2
first introduces themechanism of the PSF effect in SPM and then the de-
tails of the proposed strategy for considering the PSF in SPM. The exper-
imental results for three groups of datasets are provided in Section 3 for
validation of the proposed method. Section 4 further discusses the pro-
posed SPM method, followed by a conclusion in Section 5.

2. Methods

2.1. The PSF effect in SPM

This section will illustrate the PSF effect in SPM and demonstrate
that the coarse proportions in SPM are a convolution of the sub-pixel
class values in a local window centered at the coarse pixel. Let SV be
the spectrum of coarse pixel V, Rk be the spectrum of class endmember
k (k=1, 2,…, K, where K is the number of land cover classes), and Fk(V)
be the proportion of class k in pixel V. Based on the classical linear spec-
tral mixture model (Bioucas-Dias et al., 2012; Heinz and Chang, 2001;
Keshava and Mustard, 2002), the spectrum of each coarse pixel is a lin-
ear combination of the spectrum of endmembers, where the weights
are determined as the class proportions within the coarse pixel. That is

SV ¼ ∑
K

k¼1
Rk Fk Vð Þ ð1Þ

Due to the PSF effect in remote sensing images, Eq. (2) holds

SV ¼ Sv � hV ð2Þ

where Sv is the spectrum of sub-pixel v, hV is the PSF and ∗ is the convo-
lution operator. For sub-pixel v, its spectrum Sv can be characterized as

Sv ¼ ∑
K

k¼1
RkIk vð Þ ð3Þ

in which Ik(v) is a class indicator as follows

Ik vð Þ ¼ 1; if sub‐pixel v belongs to class k
0; otherwise

�
ð4Þ

By substituting Eq. (3) into Eq. (2), we have

SV ¼ ∑
K

k¼1
RkIk vð Þ

" #
� hV ¼ ∑

K

k¼1
Rk Ik vð Þ � hV½ � ð5Þ

The comparison between Eqs. (1) and (5) leads to

Fk Vð Þ ¼ Ik vð Þ � hV ð6Þ

Let z be the zoom factor, that is, each coarse pixel is divided into z by
z sub-pixels. As shown in the one dimensional illustration in Fig. 1,
when the PSF takes the ideal square wave filter in Eq. (7)

hV i; jð Þ ¼
1
z2

; if i; jð Þ∈V i; jð Þ
0; otherwise

(
ð7Þ

where (i, j) is the spatial location of the sub-pixel and V(i, j) is the spatial
extent of the coarse pixel V containing the sub-pixel at (i, j). Further, the
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