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Two satellites are currently monitoring surface soil moisture (SM) using L-band observations: SMOS (Soil Mois-
ture and Ocean Salinity), a joint ESA (European Space Agency), CNES (Centre national d'études spatiales), and
CDTI (the Spanish government agency with responsibility for space) satellite launched on November 2, 2009
and SMAP (Soil Moisture Active Passive), a National Aeronautics and Space Administration (NASA) satellite suc-
cessfully launched in January 2015. In this study, we used a multilinear regression approach to retrieve SM from
SMAP data to create a global dataset of SM, which is consistent with SM data retrieved from SMOS. This was
achieved by calibrating coefficients of the regression model using the CATDS (Centre Aval de Traitement des
Données) SMOS Level 3 SM and the horizontally and vertically polarized brightness temperatures (TB) at 40° in-
cidence angle, over the 2013–2014 period. Next, this model was applied to SMAP L3 TB data from Apr 2015 to Jul
2016. The retrieved SM from SMAP (referred to here as SMAP_Reg) was compared to: (i) the operational SMAP
L3 SM(SMAP_SCA), retrievedusing thebaseline Single Channel retrieval Algorithm(SCA); and (ii) the operation-
al SMOSL3 SM, derived from the multiangular inversion of the L-MEB model (L-MEB algorithm) (SMOSL3). This
inter-comparison was made against in situ soil moisture measurements from N400 sites spread over the globe,
which are used here as a reference soil moisture dataset. The in situ observations were obtained from the Inter-
national Soil Moisture Network (ISMN; https://ismn.geo.tuwien.ac.at/) in North of America (PBO_H2O, SCAN,
SNOTEL, iRON, and USCRN), in Australia (Oznet), Africa (DAHRA), and in Europe (REMEDHUS, SMOSMANIA,
FMI, and RSMN). The agreement was analyzed in terms of four classical statistical criteria: Root Mean Squared
Error (RMSE), Bias, Unbiased RMSE (UnbRMSE), and correlation coefficient (R). Results of the comparison of
these various products with in situ observations show that the performance of both SMAP products i.e.
SMAP_SCA and SMAP_Reg is similar and marginally better to that of the SMOSL3 product particularly over the
PBO_H2O, SCAN, and USCRN sites. However, SMOSL3 SM was closer to the in situ observations over the
DAHRA and Oznet sites. We found that the correlation between all three datasets and in situ measurements is
best (R N 0.80) over the Oznet sites and worst (R = 0.58) over the SNOTEL sites for SMAP_SCA and over the
DAHRA and SMOSMANIA sites (R= 0.51 and R=0.45 for SMAP_Reg and SMOSL3, respectively). The Bias values
showed that all products are generally dry, except over RSMN, DAHRA, and Oznet (and FMI for SMAP_SCA). Fi-
nally, our analysis provided interesting insights that can be useful to improve the consistency between SMAP
and SMOS datasets.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Lately, the importance of soil moisture has become increasingly ap-
parent, because soilmoisture is a key variable in better understanding of
the land-atmosphere interactions (Chen et al., 2016; Hirschi et al.,
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2014). The exchange of heat andwater between the land surface and at-
mosphere is influenced by soil moisture (Berg et al., 2014; Hupet &
Vanclooster, 2002; Seneviratne et al., 2010; Western et al., 2004),
which was recognized as an Essential Climate Variable (ECV) in 2010
(GCOS, 2010).

Global soil moisture information has become available via different
active and passive microwave remote sensing techniques with good
temporal and spatial resolutions (Bartalis et al., 2007; Kerr et al., 2001;
Njoku et al., 2002; Njoku et al., 2003; Owe et al., 2001; Ulaby et al.,
1996; Wigneron et al., 1995). However, the required temporal and spa-
tial resolutions strongly depend on the applications (e.g., agricultural
applications vs. climate studies). Recently, new global soil moisture
datasets, with a typical target accuracy of 0.04 m3/m3 (Jackson et al.,
2016; Kerr et al., 2010; Kerr et al., 2012) over bare, low vegetation
cover, and sparsely vegetated areas, have been produced based on mi-
crowave satellite observations at L-band (1.4 GHz, 21 cm). L-band is
considered optimal for soil moisture monitoring (Kerr et al., 2001;
Njoku et al., 2003;Wang & Choudhury, 1981) due to its higher sensitiv-
ity to soil moisture and penetration into vegetation and soil (Kerr, 2007;
Njoku et al., 2003; Owe & Van de Griend, 1998; Wang & Choudhury,
1981) than other higher frequencies (e.g., C-band, X-band, etc.). The
new L-band based datasets include surface soil moisture from two
spaceborne missions: ESA's (European Space Agency) Soil Moisture
and Ocean Salinity (SMOS) (Kerr et al., 2012) and NASA's (National
Aeronautics and Space Administration) Soil Moisture Active Passive
(SMAP) (Entekhabi et al., 2010). The SMOS and SMAP satellites were
launched in 2009 and 2015, respectively, and have been providing mi-
crowave brightness temperature (TB) observations since then. Soil
moisture information is retrieved from SMAP's and SMOS's TB observa-
tions based on the principle that soil TB is mainly determined by soil
moisture via soil dielectric constant (Njoku et al., 2002; Schmugge et
al., 1976; Ulaby et al., 1996). Nevertheless, the sensitivity of the SMOS
and SMAPTB observations to soil moisture is reduced by perturbing fac-
tors such as vegetation (attenuation of the emission from the soil and
additional upwelling emission toward the space-borne sensor), surface
roughness (scattering effects increase the emitting surface area), topog-
raphy, soil texture, soil bulk density, and soil temperature (Choudhury
et al., 1979; Grant et al., 2008; Holmes et al., 2006; Jackson &
Schmugge, 1991; Kerr et al., 2012; Njoku & Li, 1999; Njoku et al.,
2003; Wang et al., 1983; Wigneron et al., 2007; Wigneron et al., 2011;
Wigneron et al., 2017).

There are several remotely sensed soil moisture products available
(in addition to SMOS and SMAP); however, these cover different pe-
riods and are not consistent in terms of spatial and temporal resolutions,
period availability, grid, etc. Given the wide availability of soil moisture
datasets retrieved from different microwave observations, studies fo-
cusing on the merging of these products are important to advance in
the field of producing long-term and consistent datasets of several cli-
matic variables. A great effort has beenmade by the scientific communi-
ty in the last decade to build a coherent and consistent long term soil
moisture datasets such as the ESA Climate Change Initiative (CCI) soil
moisture data record (e.g., Enenkel et al., 2015; Liu et al., 2012; http://
www.esa-soilmoisture-cci.org/; Wagner et al., 2012), deemed neces-
sary for global soil moisture monitoring, drought monitoring, climate
forecasts, etc. The CCI product is estimated based on a posteriori merg-
ing i.e. merging the retrieved soil moisture datasets based on the rela-
tive errors of soil moisture products and a CDF (cumulative
distribution function)-matching used to rescale the different soil mois-
ture products into a common climatology. An alternative approach is
to use data fusion i.e. merging of microwave datasets prior to the re-
trieval (e.g., through the use of a common retrieval algorithm as pro-
posed later in this paper). This method allows better exploitation of
the complimentary of information provided by the different sensors
not included in the posteriori combination approach (Aires et al.,
2012; Kolassa et al., 2013). A recent project was established by ESA to
investigate the integration of SMOS soil moisture estimates within the

CCI soil moisture data record using three approaches that implement
the data fusion strategy:

(i) multi-linear regression (Al-Yaari et al., 2016);
(ii) neural networks (Rodríguez-Fernández et al., 2016); and
(iii) the Land Parameter Retrieval Model (LPRM; Van der Schalie et

al., 2016).

Al-Yaari et al. (2016), for instance, demonstrated the efficiency of
physically-based multiple-linear regression equations (Wigneron et
al., 2004), referred to here as Linear RegressionMethod (LRM) in the fol-
lowing, to retrieve soil moisture from the Advanced Microwave Scan-
ning Radiometer Earth Observing System (AMSR-E) TB observations.
The LRM has several advantages: quickness, simplicity, and no strong
demand on auxiliary datasets (Al-Yaari et al., 2016) such as the normal-
ized difference vegetation index (NDVI) product used by the SMAP Sin-
gle Channel Algorithm (SMAP_SCA), to estimate vegetation effects. The
purpose of that initial studywas to extend the SMOS soil moisture prod-
uct into the past i.e., 2003–2009, using AMSR-E TB observations. The
current study follows the same strategy to retrieve soil moisture from
SMAP TB observations (SMAP_Reg) with a purpose to improve the tem-
poral sampling rate togetherwith the SMOS soilmoisture product at the
global scale. Themain interest in the SMAP-Reg soil moisture product is
that it is fully consistent (coherent in temporal dynamics and absolute
values) with the SMOS Level 3 soil moisture product, as the regression
equations are calibrated based on SMOS Level 3 data (soil moisture
and TB). Furthermore, the idea here is to re-build a coherent and consis-
tent soil moisture dataset rather than to develop a new algorithm or to
surpass the well-established radiative transfer models (e.g. the L-band
Microwave Emission of the Biosphere (L-MEB) model, LRPM, etc.).

To this end, two specific objectives of this study are listed below:

(i) produce a soil moisture product (SMAP_Reg) from SMAP TB that
is consistentwith SMOS soil moisture retrievals using physically-
based regression equations; and

(ii) compare SMAP_Reg with operational SMAP and SMOS soil mois-
ture retrievals against ground-based soilmoisturemeasurements.

Since SMAP soil moisture products are relatively recent, their evalu-
ation and their inter-comparison with other soil moisture datasets are
required (Chan et al., 2016; Zeng et al., 2016). To advance our goal,
therefore, the second objective of this study is two-fold: to evaluate
the SMAP_Reg product, and to carry out a first evaluation of the agree-
ment between SMAP and SMOS Level 3 soil moisture products on a
global scale and against ground-based measurements (sparse and
dense networks). The aim is not to establish which product is more ac-
curatewith respect to in situ but to understand the spatio-temporal pat-
terns of SMAP relative to SMOS and how SMAP differs from SMOS
globally. The agreement and degree of dispersion between the SMAP
and SMOS soil moisture products are analyzed here in terms of four
classical statistical criteria: Root Mean Squared Error (RMSE), Bias, Un-
biased RMSE (UnbRMSE), and correlation coefficient (R) during the
overlapping period (from Apr 2015 to Jul 2016).

The datasets, the local regression method, and the evaluation met-
rics used in this study are described in Section 2. Results are presented
in Section 3. Finally, discussion and conclusions are provided in
Section 4 and Section 5, respectively.

2. Materials and methods

2.1. Datasets

2.1.1. SMOS level 3 TB and soil moisture products
SMOS is a joint ESA, CNES (Centre national d'études spatiales), and

CDTI (the Spanish government agency with responsibility for space)
mission that was launched on November 2, 2009 (Kerr et al., 2012).
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