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ARTICLE INFO ABSTRACT

Keywords: Global rainfall information is useful for many applications. However, real-time versions of satellite-based rainfall
Rainfall products are known to contain errors. Recent studies have demonstrated how the information about rainfall
Soil moisture intrinsically contained in soil moisture data can be utilised for improving rainfall estimates. That is, soil moisture
SMos dynamics are impacted for several days by the accumulated amount of rainfall following within a particular
QS;RFEX event. In this context, soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite is used in this

study to correct rainfall accumulation estimates provided by satellite-based real-time precipitation products such
as CMORPH, TRMM-3B42RT or PERSIANN. An algorithm based on the SMOS measurements data assimilation is
tested in two land-surface models of different complexity: a simple hydrological model (Antecedent Precipitation
Index (API)) and a more sophisticated state-of-the-art land-surface model (SURFEX (Surface Externalisée)). We
show how the assimilation technique, based on a particle filter method, generally leads to a significant im-
provement in rainfall estimates, with slightly better results for the simpler (and less computationally demanding)
API model. This methodology has been evaluated for six years at ten sites around the world with different land
use and climatological features. The results also show the limitations of the methodology in regions highly
affected by mountainous terrain, forest or intense radio-frequency interference (RFI), which can notably affect
the quality of the retrievals. The satisfactory results shown here invite the future operational application of the
methodology in near-real time on a global scale.

Particle filter

1. Introduction

Precipitation is a key variable of the water cycle, whose estimation
is crucial for many applications (Brocca et al., 2016). Accurate esti-
mates of the amount of water which reaches the ground at specific areas
in near-real time are needed for hydrological applications, including
flood (Wake, 2013; Jongman et al., 2014; Casse et al., 2015; Lievens
et al., 2015) or landslide (Van Asch et al., 1999; Guzzetti et al., 2007;
Iverson, 2000; Pennington et al., 2014) emergency response planning.
Rainfall accumulation estimates are also very important for agricultural
strategy and modelling (Fisher, 1925; French and Schultz, 1984;
Akponikpe et al., 2011; Ramarohetra et al., 2013). Besides, accurate
precipitation data is certainly decisive for data assimilation in
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numerical weather prediction models, since it highly affects surface
energy fluxes that will drive the evolution of the planetary boundary
layer (Pielke et al., 1998) which is linked to the formation of mesoscale
and/or synoptic weather systems. Finally, the link between the spatio-
temporal distribution of precipitation and the freshwater availability at
several regions of the Earth is crucial for decision-making to mitigate
extreme situations (Hou et al., 2014; Shannon et al., 2008), such as
intense droughts.

Rain gauges provide the most accurate and reliable data to obtain
the amount of rainfall at a point on the Earth's surface (Lanza and
Vuerich, 2009). However, the heterogeneous (temporal and spatial)
characteristic of rainfall makes the use of the information provided by
one (or a few) station(s) not sufficient to address the large-scale


http://www.sciencedirect.com/science/journal/00344257
http://www.elsevier.com/locate/rse
http://dx.doi.org/10.1016/j.rse.2017.08.022
http://dx.doi.org/10.1016/j.rse.2017.08.022
mailto:carlos.roman-cascon@univ-grenoble-alpes.fr
http://dx.doi.org/10.1016/j.rse.2017.08.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2017.08.022&domain=pdf

C. Romdn-Cascén et al.

applications listed above. Therefore, very extensive deployment of rain
gauges is needed to appropriately quantify rainfall accumulation over
relatively-large areas using spatial analysis techniques (Creutin and
Obled, 1982; Jones et al., 2009). This is possible in some areas of
economically developed countries, such as in the United States (e.g.
Allen and Naney, 1991) or France (e.g. Delrieu et al., 2004). However,
in developing regions (especially those in Africa), the number of
available rain gauges has decreased over the last two decades (Ali and
Lebel, 2009), mainly due to maintenance costs or political unrest. In
order to improve the spatial coverage of rainfall information in areas
with a limited number of rain gauges, the complementary use of
ground-based weather radar data is a very useful technique. However,
weather radars suffer from many issues that affect the reliability of the
estimates (Krajewski and Smith, 2002) and are not available every-
where in the world.

To address these issues, important efforts have devoted during the
last few years to develop and improve precipitation estimates from
satellites (Ebert et al., 2007). These satellite-based precipitation pro-
ducts (SPPs) are based on the use of infrared (IR) sensors on-board
geostationary satellites and/or microwave (MW) sensors on polar sa-
tellites. IR sensors use cloud-top temperatures to indirectly infer the
associated precipitation and have the advantage of a larger spatial and
denser temporal coverage, but they suffer from accuracy and false-
alarm issues due to the indirect retrieval of precipitation (which is not
always in accordance with the brightness temperature of the cloud top).
MW sensors are more accurate, since they are based on the direct signal
of hydrometeors (rain, drizzle, snow or haze) falling from the cloud
base, but they have a significantly lower spatio-temporal resolution
(Pellarin et al., 2013). To solve this issue, information provided by IR
sensors is combined with MW sensors to generate improved multi-
sensor SPP. However, even using this combination, several studies have
demonstrated how precipitation from these products is biased when
compared to real (and spatially averaged) values observed at ground
level (e.g. Prasetia et al., 2013; Cai et al., 2015). These issues can be
addressed in a post-processing step by correcting the real-time SPP data
with ground-based observations, such as for example in the Global
Precipitation Climatology Project (GPCP) (Huffman et al., 1997; Adler
et al., 2003). However, due to lags in the availability of rain gauges
observations, these adjusted products are available only after several
days (or even several weeks/months). Moreover, even the adjusted
products can be inaccurate in some cases (e.g. Yin and Gruber, 2010).

In this context, the use of near real-time soil moisture retrieved from
satellites has been demonstrated as a very promising tool to improve
precipitation estimates (Pellarin et al., 2008; Brocca et al., 2013). Soil
moisture has the advantage of having a useful memory of rainfall events
occurring several days in the past (Seneviratne et al., 2006; McColl
et al., 2017). Hence, several studies have recently used this relation
with the aim of improving precipitation estimates using different
methodologies. Crow and Bolten (2007) used a Kalman filter for the
assimilation of soil moisture data from the Advanced Microwave
Scanning Radiometer - Earth Observing Systems (AMSR-E) within an
Antecedent Precipitation Index (API) model, in order to estimate errors
of different SPPs in the Southern United States. Pellarin et al. (2008)
also used soil moisture data from AMSR-E to remove erroneous rain
events from an IR satellite sensor using the API model. Almost si-
multaneously, Crow et al. (2009) used a conceptually similar approach
to directly correct rainfall events of several SPPs and, later, Crow et al.
(2011) improved their assimilation and modelling techniques to create
the Soil Moisture Analysis Rainfall Tool (SMART). A similar metho-
dology was applied in Wanders et al. (2015), by using a particle-filter
assimilation technique for correcting precipitation over the US. In a
different approach, Brocca et al. (2013) and Brocca et al. (2014) used
satellite soil moisture data to directly infer rainfall quantities by in-
verting the soil-water balance equation via the so-called SM2RAIN
methodology. SMART, SM2RAIN and the API-based methodologies
were recently tested in Australia in the study of Brocca et al. (2016),
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where soil moisture data from the Soil Moisture and Ocean Salinity
(SMOS) satellite was used to correct the real-time Tropical Rainfall
Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA) product.

In the present study, a particle-filter (DeChant and Moradkhani,
2011; Yan et al., 2015) assimilation technique, similar - but not iden-
tical - to the one applied by Wanders et al. (2015) is applied in two
models of different complexity: an API model (an improved version of
the one presented in Pellarin et al. (2008)) and the more complex
Surface Externalisée (SURFEX) land-surface model (Masson et al., 2013).
To our knowledge, this is the first time that a complex state-of-the-art
land-surface model is compared to a simple one for the aim of cor-
recting rainfall by assimilating satellite soil moisture data. It is hy-
pothesised that the use of a more complex model would improve upon
the API model in some conditions (e.g., under large run-off after intense
rain events or in dense-vegetated areas highly affected by evapo-
transpiration). The results provided by using these two models are
evaluated in terms of correction for three different real-time SPPs over
ten sites around the world with different land cover and climate fea-
tures (e.g., surface and vegetation characteristics, rainfall climatology,
latitude, and closeness to mountainous areas). Past correlation ap-
proaches were typically tested in only a few specific locations or regions
(e.g. in Australia, US and/or West Africa). In this work, reliable and
extensive ground-based precipitation datasets from rain gauges are
available at ten diverse sites, providing an excellent framework to test
the methodology under different conditions and therefore strengthen
the final conclusion of a potential real-time application at ungauged
locations worldwide.

The paper is organised as follows: Section 2 details the data used,
the API and SURFEX models and the particle filter assimilation tech-
nique. Results are presented in Section 3 and the discussion of these
results is provided in Section 4. Finally, the main conclusions are
summarised in Section 5.

2. Data, models and methodology

This section is divided in three main parts. The observational data
needed to perform this work are described in the first one. The second
part provides a brief description of the two land surface models used
and compared in this study. In the third part, the land-surface model
assimilation algorithm (LMAA) is described with equations, references
and an example figure.

2.1. Observational data

This study aims at improving precipitation estimates by using SMOS
soil moisture retrievals combined with data from a SPP (the correction
is tested for three different ones). Spatially-averaged in situ rainfall data
from different hydrological networks are used as the reference for the
evaluation of the methodology at ten sites around the world. Some
additional data were also needed to initialize or to force the land-sur-
face models. All these datasets are explained in the following subsec-
tions.

2.1.1. Satellite-based precipitation products (SPPs)

Three different satellite-based precipitation products are used: 1)
The Climate Prediction Center morphing method (CMORPH) product
(Joyce et al., 2004), 2) the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN) pro-
duct (Sorooshian et al., 2000), and 3) the TRMM-3B42RT from the
Tropical Rainfall Measuring Mission real-time product (Huffman et al.,
2010).

All of these products combine information from IR and MW sensors
to estimate precipitation accumulation with a resolution of 3 h and
0.25°. Due to the spatial mismatch between the grid of these rainfall
products and the SMOS grid, the SPP pixels which ar closest to the
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