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A B S T R A C T

Hyperspectral remote sensing is now an established tool to determine shallow water properties over large areas,
usually by inverting a semi-analytical model of water reflectance. However, various sources of error may make
the observed subsurface remote-sensing reflectance deviate from the model, resulting in an increased retrieval
error when inverting the model based on classical least-squares fitting. In this paper, we propose a probabilistic
forward model of shallow water reflectance variability that describes two of the main sources of error, namely,
(1) the environmental noise that includes every source of above-water variability (e.g., sensor noise and rough
water surface), and (2) the potentially complex inherent spectral variability of each benthic class through their
associated spectral covariance matrix. Based on this probabilistic model, we derive two inversion approaches,
namely, MILE (MaxImum Likelihood estimation including Environmental noise) and MILEBI (MaxImum
Likelihood estimation including Environmental noise and Bottom Intra-class variability) that utilize the in-
formation contained in the proposed covariance matrices to further constrain the inversion while allowing the
observation to differ from the model in the less reliable wavebands. In this paper, MILE and MILEBI are com-
pared with the widely used least-squares (LS) criterion in terms of depth, water clarity and benthic cover re-
trievals. For these three approaches, we also assess the influence of constraining bottom mixture coefficients to
sum to one on estimation results.

The results show that the proposed probabilistic model is a valuable tool to investigate the influence of
bottom intra-class variability on subsurface reflectance, e.g., as a function of optical depth or environmental
noise. As expected, this influence is critical in very optically shallow waters, and decreases with increasing
optical depth. The inversion results obtained from synthetic and airborne data of Quiberon Peninsula, France,
show that MILE and MILEBI generally provide better performances than LS. For example, in the case of airborne
data with depth ranging from 0.44 to 12.00 m, the bathymetry estimation error decreases by about 32% when
using MILE and MILEBI instead of LS. Estimated maps of bottom cover are also more consistent when derived
using sum-to-one constrained versions of MILE and MILEBI. MILE is shown to be a simple but powerful method
to map simple benthic habitats with negligible influence of intra-class variability. Alternatively, MILEBI is to be
preferred if this variability cannot be neglected, since taking bottom covariance matrices into account con-
currently with mean reflectance spectra may help the bottom discrimination, e.g., in the presence of overlapping
classes. This study thus shows that taking potential sources of error into account through appropriate para-
meterizations of spectral covariance may be critical to improve the remote sensing of shallow waters, hence
making MILE and MILEBI interesting alternatives to LS.
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1. Introduction

Optical remote sensing provides an outstanding opportunity to
monitor aquatic environments from local to global scales, potentially
offering high temporal and spatial resolutions, e.g., as allowed by re-
cent advances in unmanned aerial vehicles or by the Sentinel-2 mission
developed by the European Space Agency within the “Copernicus”
program (Aschbacher and Milagro-Pérez, 2012; Drusch et al., 2012).
The use of such high spatial resolution data (i.e., less than a few dozen
meters) is particularly critical for coastal and inland waters, e.g., to map
heterogeneous benthic habitats (Mishra et al., 2006; Hedley et al.,
2012b), to detect coral bleaching (Andréfouët et al., 2002; Hedley et al.,
2012a) or to monitor small lakes and rivers (Joshi and D’Sa, 2015). As
compared with the open ocean, coastal and inland waters are generally
more complex environments, whose remotely-sensed reflectance may
be highly variable due to simultaneous changes in bathymetry, water
quality, bottom type, water surface and atmospheric conditions. In
shallow waters, the decoupling of these effects has been shown to be
more accurate when using hyperspectral data instead of multispectral
data (Lee and Carder, 2002; Lee et al., 2013). Indeed, a higher number
of spectral bands as well as an increased spectral resolution allow re-
ducing confounding effects between optically-active parameters, e.g.,
by detecting the subtle changes in reflectance that originate from
narrow absorption regions potentially present in bottom albedo (Kutser
et al., 2003; Hochberg and Atkinson, 2003; Hedley et al., 2012a; Botha
et al., 2013).

In coastal environments, hyperspectral remote sensing methods that
allow the simultaneous retrieval of bathymetry, water quality and
benthic cover are usually based on a radiative transfer model that de-
scribes how light propagates in water (Mobley, 1994). This inverse
problem is generally solved using either look-up tables (LUTs) or
iterative optimization (Dekker et al., 2011). In the first case, a spectral
library corresponding to different combinations of depth, water quality
and benthic cover is pre-computed using an exact (Mobley, 1994) or
approximated (Lee et al., 1998) radiative transfer model. For each
image pixel, the measured reflectance is then matched with the closest
simulated spectrum in the LUT. CRISTAL (Comprehensive Reflectance
Inversion based on Spectrum matching and TAble Lookup) (Mobley
et al., 2005) and ALLUT (Adaptive Linearized Look-Up Trees) (Hedley
et al., 2009) as denoted by Dekker et al. (2011) are examples of such
approaches. The inverse problem can also be solved by numerically
optimizing a cost function that relates measured and simulated re-
flectance spectra. In this case, the forward model used for simulation
has to be sufficiently fast to permit multiple runs for each image pixel.
To this end, a number of analytical and semi-analytical models have
been developed under various assumptions and water types
(Maritorena et al., 1994; Lee et al., 1998; Albert and Mobley, 2003).
These models approximate the radiative transfer equation and generally
simulate the reflectance of shallow waters as a function of sun-sensor
geometry, depth, bottom albedo and water-column inherent optical
properties (i.e., absorption and scattering properties of the water
column). Note that, whenever possible, the latter can further be related
to specific inherent optical properties and concentrations of optically-
active water constituents (Brando et al., 2009).

Due to its accurate performance and simplicity, the Euclidean dis-
tance has generally been used to assess the goodness-of-fit between the
observation and the model, either when using LUTs (Mobley et al.,
2005; Hedley et al., 2012a, 2009) or iterative optimization (Lee et al.,
2001, 1999; Lee and Carder, 2002; Albert and Gege, 2006; Klonowski
et al., 2007; Dekker et al., 2011; Jay et al., 2012; Giardino et al., 2012;
Garcia et al., 2014a; McKinna et al., 2015; Jay and Guillaume, 2016).
Note that in the case of iterative optimization, the use of Euclidean
distance for model inversion corresponds to nonlinear unweighted
least-squares fitting. However, this cost function does not fully consider
the information contained in the reflectance data. In particular, it does
not utilize spectral covariance (i.e., covariance between wavebands),

yet such knowledge of the data structure may be useful to improve the
retrieval accuracy due to the non-negligible correlation between hy-
perspectral bands (Gillis et al., 2013).

Importantly, as the least-squares method tries to find the best pos-
sible fit between the observation and the model, it is not designed to
handle possible deviations between them. For example, the “environ-
mental noise equivalent reflectance difference” (Brando and Dekker,
2003) (hereafter called environmental noise and denoted NEΔrE) may
lead the measured subsurface reflectance to strongly differ from the
modeled one. For a given spectral band, NEΔrE corresponds to the re-
flectance standard deviation as estimated over an “as homogeneous as
possible” water area. As a result, it not only takes into account the
sensor noise, but also scene-specific above-water variability, including
atmospheric variability, effects related to the rough water surface, re-
fractions of diffuse and direct sunlight, and residuals from imperfect
atmospheric, air-water interface and sun glint corrections (Brando and
Dekker, 2003; Brando et al., 2009; Botha et al., 2013). To consider such
errors within model inversion, Brando et al. (2009) and Botha et al.
(2013) have weighted the contribution of each waveband according to
the inverse of NEΔrE. In doing so, the influence of the noisiest and least
accurate spectral bands is reduced, which lowers the estimation var-
iance.

Another important source of error between the measured and si-
mulated spectra is the inherent spectral variability of each considered
benthic class. Based on PlanarRad simulations and a comprehensive
bottom spectral library, Hedley et al. (2012b) have actually demon-
strated that this is one of the primary limiting factors for benthic
mapping purposes (whereas sensor noise is only a minor factor). In-
deed, while a single mean reflectance spectrum is generally used to
characterize the spectral response of each benthic class, many authors
have shown that such intrinsic variability may sometimes be greater
than the mean reflectance itself, either at the local or at the global
scales (Hochberg et al., 2003; Mobley et al., 2005; Hedley et al., 2012b;
Petit et al., 2017). Therefore, this variability may strongly affect the
retrieval accuracy if it is not (or not properly) taken into account during
the inversion process. To this end, assuming that the bottom reflectance
spectrum only varies according to a single multiplicative factor across
all the wavebands, several authors have proposed to estimate this factor
for each possible substrate (Lee et al., 1999; Fearns et al., 2011; Garcia
et al., 2014b; Petit et al., 2017). Under the same assumption, using the
Spectral Angle Mapper (SAM) as a cost function may also decrease the
detrimental influence of bottom intra-class variability, since the SAM is
insensitive to variations in the global reflectance magnitude (Brando
et al., 2009; Botha et al., 2013; Petit et al., 2017). However, this
spectral variability cannot always be reliably represented using a single
multiplicative factor (Hochberg et al., 2003; Hedley et al., 2012b), thus
making the development of alternative inversion methods highly de-
sirable.

In this study, we first propose a realistic probabilistic model of
shallow water reflectance variability based on the semi-analytical
model of Lee et al. (1998) and that fully describes the influences of
environmental noise and bottom intra-class variability. Both sources of
error are considered to be Gaussian and characterized by a mean vector
and a spectral covariance matrix. Then, using this modeling, we de-
velop two new inversion approaches based on maximum likelihood
estimation that enable a pixelwise retrieval of all optically-active
parameters, i.e., bathymetry, water clarity parameters and benthic
cover. These two approaches are compared with the classical least-
squares method using both simulated and airborne data.

2. Data

2.1. Study area

As shown in Fig. 1, the overall study area is located in the Quiberon
Bay on the French west coast (around 47°31’N, 3°05’W). Three sites
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