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Agricultural drought is a complex and insidious natural hazard further complicated by crop impacts. Univariate,
bivariate, andmultivariate drought analyses have achieved some success, but the analysis of agricultural drought
evolution and integrationwith crop growth is still lacking. In this study, an Evolution Process-basedMulti-sensor
Collaboration (EPMC) framework was proposed with the realization that effective agricultural drought assess-
ment requires an integrated approach that considers both drought development and crop phenology. Then the
Process-based Accumulated Drought Index (PADI) was designed to quantify the accumulative drought impacts
on crops. Based on the monitoring of precipitation, soil moisture, and vegetation conditions, EPMC extracted
four main agricultural drought evolution phases termed: (i) latency, (ii) onset, (iii) development, and (iv) recov-
ery. Subsequently, the crop growth stages and water-deficit sensitivity coefficients were integrated with the
drought evolution process. Experiments conducted in three different climate regions of China demonstrated
that the EPMC framework could clearly depict evolution of the different phases of agricultural drought. Three de-
cades of multi-sensor datasets include monthly precipitation from the Global Precipitation Climatology Centre
(GPCC), root zone soil moisture from the satellite-model integrated Global Land Data Assimilation System ver-
sion 2 (GLDAS-2.0), and vegetation condition data from the Advanced Very High Resolution Radiometer
(AVHRR). Results indicated that PADI reliably provided a weekly evaluation of accumulative drought severity in-
stead of a “snapshot”. PADI was also compared with the Palmer Drought Severity Index (PDSI) and multi-time
scale of Standardized Precipitation Index (SPI). Results showed good correlation with short-term SPI at the
onset of drought as well as long-term SPI at later stages. Additionally, compared to the correlation with precipi-
tation, soil moisture, and vegetation data alone, it was found that as an integrated model, PADI correlated well
with wheat yield loss (Spearman rank correlation coefficient ρwas between 0.66 and 0.77, p b 0.05). Therefore,
the proposed multi-sensor integrated monitoring framework and index provide a useful and new approach to
address the complexity of agricultural drought, with particular relevance to drought impact assessment.
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1. Introduction

Drought is a major natural hazard in China and all over the world
(Wilhite, 2000; Sheffield et al., 2012; AghaKouchak et al., 2015a). For in-
stance, the 2011 summer drought in China affected over 30million peo-
ple causing an economic loss of about 2.4 billion dollars (Yuan et al.,
2015). Responding to need for drought monitoring and evaluation by
remote sensing, this study seeks a multi-sensor collaboration approach
to form a multivariate drought model.

Over the last few decades, studies have focused on drought concepts
(Dracup et al., 1980;Wilhite and Glantz, 1985), monitoring (Svoboda et
al., 2002; AghaKouchak et al., 2015b), predictions (Hunt, 1991), impacts
(Changnon and Easterling, 1989; Mallya et al., 2013), Vulnerability
(Charusombat and Niyogi, 2011), and mitigation (Wilhite et al., 2007).
A number of drought information systems have been configured to dis-
play and integrate drought indices more intuitively. From global to re-
gional scales, examples include Global Integrated Drought Monitoring
and Prediction System (GIDMaPS; Hao et al., 2014), Global Drought In-
formation System (GDIS; Heimand Brewer, 2012), Standardized Precip-
itation-Evapotranspiration Index (SPEI) Global Drought Monitor
(Beguería et al., 2010), African Flood and Drought Monitor (AFDM;
Yuan et al., 2013; Sheffield et al., 2014), Famine Early Warning System
Network in Africa (FEWS NET; Verdin et al., 2005), US-Mexico Drought
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Prediction Tool (Lyon et al., 2012), US Drought Monitor (USDM; Svoboda
et al., 2002), European Drought Observatory (EDO; Estrela and Vargas,
2012), and German Drought Monitor (GDM; Matthias et al., 2016).
Some of the global systems, such as GIDMaPS can be applied for country
scale assessment as well, and indices in these systems have also been ap-
plied for a long time, for example in China (Kogan et al., 2005; Zou et al.,
2005; Yu et al., 2014; Zhang et al., 2016). Further, new drought indices
also have been proposed for drought monitoring in China, including
Drought Severity Index (DSI; Su et al., 2003), Modified Perpendicular
Drought Index (MPDI; Ghulam et al., 2007), Optimized Meteorological
Drought Index (OMDI; Hao et al., 2015), and Integrated Surface Drought
Index (ISDI; Wu et al., 2013, 2015). Building on the need for more per-
spectives ondrought, our broader goal is to develop a novel droughtmon-
itoring systembased on a newdroughtmonitoring framework and index.

Currently, most drought indices in drought systems have been
modeled by univariate analysis, or multivariate (and bivariate) analysis
(Mishra and Singh, 2010; AghaKouchak et al., 2015b).

Univariate analysis focuses on one drought-related environmental
variable (McVicar and Jupp, 1998), such as the Standardized Precipita-
tion Index (SPI; McKee et al., 1993), Vegetation Condition Index (VCI;
Kogan, 1990), Standardized Soil Moisture Index (SSI; AghaKouchak,

2014), and Standard Relative Humidity Index (SRHI; Farahmand et al.,
2015). By design, a univariate index can capture anomalous changes
that occur in one key environmental variable. However, to define a
drought, especially agricultural drought, which is affected by uncer-
tainties (i.e., disease and field management), univariate indices are in-
sufficient to investigate drought associated evolutions and impacts
(Charusombat and Niyogi, 2011; Hao and AghaKouchak, 2014).

Table 1 lists a summary of several typical multivariate analyses. In
particular, bivariate analysis is a subset of multivariate analysis and typ-
ically combines data from land surface temperature (LST) and vegeta-
tion condition, such as the Vegetation Health Index (VHI; Kogan,
2002). Similar bivariate indices include the ratio of land surface temper-
ature andNormalized Difference Vegetation Index (NDVI) (McVicar and
Bierwirth, 2001) and Standardized Precipitation Evapotranspiration
Index (SPEI; Vicente-Serrano et al., 2010). Studies such as (Mishra and
Singh, 2011) have documented some drawbacks of bivariate analysis
and their applicability.

A broader subset of multivariate analysis integrates more than two
variables, for example the Microwave Integrated Drought Index
(MIDI; Zhang and Jia, 2013), which is combined by precipitation, soil
moisture, and land surface temperature. Other proposed multivariate

Table 1
Summaryof typical studies usingmultivariate analysis for agricultural droughtmonitoring/evaluation, including experiment region and year, data,methodology, and keyfindings. Some of
the readily accessible data/productswere listedwhile its deriveddatawasnot includedhere. Spatial and temporal resolutionswere given alongwith somedatasets. Unit of “Data length” is
year. “MODIS=Moderate Resolution Imaging Spectroradiometer; LAI= Leaf Area Index;MERRA=Modern-Era Retrospective analysis for Research and Applications; TRMM=Tropical
RainfallMeasuringMission; ESI=Evaporative Stress Index; PDSI=Palmer Drought Severity Index; AVHRR=AdvancedVeryHighResolution Radiometer; VegDRI=Vegetation Drought
Response Index; TCI= Temperature Condition Index; PCI=Precipitation Condition Index; SDI= SynthesizedDrought Index; PCA=Principal Component Analysis; AMSR-E=Advanced
Microwave Scanning Radiometer-EOS; SM = Soil Moisture; CLSMAS = China Land Surface Soil Moisture Assimilation System; OVDI = Optimized Vegetation Drought Index;
RWC = Relative Water Content; CPC = Climate Prediction Center; NOAA = National Oceanic and Atmospheric Administration; KECA = Kernel Entropy Component Analysis;
SDCI = Scaled Drought Condition Index; NLCD = National Land Cover Database; DEM = Digital Elevation Model; ISDI = Integrated Surface Drought Index; CART = Classification And
Regression Tree”. The studies are listed alphabetically.

No. Reference Region and year Data Data
length

Model/algorithm/main steps Key findings

1 Anderson et
al. (2016)

Brazil
(2003−2013)

MODIS LAI (1 km, 4 day); MODIS LST
(1 km, daily); MERRA; TRMM
precipitation (0.25°, daily)

10 ESI calculation; index anomalies
standardization; yield correlation; does
not consider crop modeling

At the state scale, the ESI provided higher
yield correlations for most crops and
regions in comparison with TRMM and
LAI anomalies.

2 Brown et al.
(2013)

North-central, U.S.
(2002)

SPI (bi-weekly); PDSI (bi-weekly);
AVHRR NDVI (1 km); start of season;
land cover (30 m); AWC; irrigated
agriculture (1 km); ecoregions

16 Eight inputs processing; empirically
derived model generation; VegDRI
mapping; consider crop modeling

VegDRI represents an objective,
repeatable, and high resolution approach
to drought monitoring that can be
implemented in a near real-time fashion.

3 Du et al.
(2013)

Shandong, China
(2010−2011)

MODIS NDVI (1 km, monthly); LST
(1 km, 8 day); TRMM precipitation
(0.25°, monthly)

11 VCI, TCI and PCI derivation; SDI
calculating by PCA; does not consider
crop modeling

SDI is strongly correlated with SPI-3,
variation of crop yield and
drought-affected crop areas.

4 Hao et al.
(2015)

Southwest of
China
(2005−2009)

TRMM precipitation (0.25°, monthly);
MODIS LST (1 km, 16 day); AMSR-E
SM (25 km); CLSMAS (0.1°); MODIS
NDVI (1 km, 16 day)

5 Indices scaling; OVDI combination by
empirical weights, PCA, and constrained
optimization; does not consider crop
modeling

OVDI was best correlated to SPEI-3, and
had a similar trend with soil RWC in
temporal scale.

5 Hao and
AghaKouchak
(2013)

California and
North Carolina,
U.S. (1974−1990)

CPC precipitation (monthly); CPC soil
moisture (monthly)

78 SPI and SSI preparation; copulas based
conjunction; does not consider crop
modeling

MSDI describes the drought onset as early
as SPI, while it shows drought persistence
similar to SSI. MSDI shows a more severe
drought condition when both the
precipitation and soil moisture exhibit a
deficit.

6 Rajsekhar et
al. (2015a)

Texas, U.S.
(1950−1957,
2010−2011)

NOAA precipitation (1/8°, monthly);
runoff (1/8°, monthly); actual
evapotranspiration

63 Inputs transformation into standard
normal variates; MDI extraction based
on KECA; does not consider crop
modeling

MDI is unique in the sense that it accounts
for all the physical forms of drought. MDI
was found to be competent in capturing
the onset, persistence and termination of
droughts.

7 Rhee et al.
(2010)

Arizona and New
Mexico, North
Carolina and
South Carolina,
U.S. (2000−2009)

MODIS LST (1 km, 8 days); MODIS
NDVI (1 km, monthly), MODIS
reflectance (500 m, 8 day); NLCD
(30 m), TRMM precipitation (0.25°,
monthly)

10 Inputs scaling; SDCI calculation by
selected weights combination;
regression analysis with crop yield;
does not consider crop modeling

SDCI performed better than existing
indices such as NDVI and Vegetation
Health Index; the year-to-year changes
and spatial distributions of SDCI over both
arid and humid regions generally agreed
to the USDM.

8 Wu et al.
(2013, 2015)

Mid-eastern China
(2000−2009)

MOIDS NDVI (1 km, 16 days); MODIS
LST (1 km, 8 day); ecological zoning
(1 km); AWC (10 km); irrigation
water management distribution
(10 km); DEM (1 km)

10 14 inputs processing (PDSI, SPI, NDVI,
LST, etc.); integrated multisource data
mining technology (CART); evaluation
of different integration models;
consider crop modeling

ISDI can be used not only to monitor the
main drought features, including
precipitation anomalies and vegetation
growth conditions but also to indicate the
Earth surface thermal and water content
properties by incorporating temperature
information.
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