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A B S T R A C T

Recent advancements in remote sensing technology, specifically Light Detection and Ranging (LiDAR)
sensors, provide the data needed to quantify forest characteristics at a fine spatial resolution over large
geographic domains. From an inferential standpoint, there is interest in prediction and interpolation of
the often sparsely sampled and spatially misaligned LiDAR signals and forest variables. We propose a fully
process-based Bayesian hierarchical model for above ground biomass (AGB) and LiDAR signals. The process-
based framework offers richness in inferential capabilities, e.g., inference on the entire underlying processes
instead of estimates only at pre-specified points. Key challenges we obviate include misalignment between
the AGB observations and LiDAR signals and the high-dimensionality in the model emerging from LiDAR
signals in conjunction with the large number of spatial locations. We offer simulation experiments to eval-
uate our proposed models and also apply them to a challenging dataset comprising LiDAR and spatially
coinciding forest inventory variables collected on the Penobscot Experimental Forest (PEF), Maine. Our key
substantive contributions include AGB data products with associated measures of uncertainty for the PEF
and, more broadly, a methodology that should find use in a variety of current and upcoming forest variable
mapping efforts using sparsely sampled remotely sensed high-dimensional data.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Coupling forest inventory with remotely sensed Light Detection
and Ranging (LiDAR) datasets using regression models offers an
attractive approach to mapping forest variables at stand, regional,
continental, and global scales. LiDAR data have shown great potential
for use in estimating spatially explicit forest variables over a range
of geographic scales (Asner et al., 2009; Babcock et al., 2013; Finley
et al., 2011; Iqbal et al., 2013; Muss et al., 2011; Næsset, 2011; Neigh
et al., 2013). Encouraging results from these and many other studies
have spurred massive investment in new LiDAR sensors and sen-
sor platforms, as well as extensive campaigns to collect field-based
calibration data.

Much of the interest in LiDAR based forest variable mapping is
to support carbon monitoring, reporting, and verification (MRV) sys-
tems, such as defined by the United Nations Programme on Reducing
Emissions from Deforestation and Forest Degradation (UN-REDD)
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and NASA’s Carbon Monitoring System (CMS) (CMS, 2010; Le Toan
et al., 2011; Ometto et al., 2014; UN-REDD, 2009). In these, and
similar initiatives, AGB is the forest variable of interest because it
provides a nearly direct measure of forest carbon (i.e., carbon com-
prises ∼50% of wood biomass, West, 2004). Most efforts to quantify
and/or manage forest ecosystem services, e.g., carbon, biodiversity,
and water, seek high spatial resolution wall-to-wall data products
such as gridded maps with associated measures of uncertainty, e.g.,
point and associated credible intervals (CIs) at the pixel level. In fact
several high profile international initiatives include language con-
cerning the level of spatially explicit acceptable error in total forest
carbon estimates, see, e.g., UN-REDD (2009) and UNFCCC (2015).

Many current LiDAR data acquisition campaigns focus on achiev-
ing complete coverage at a high spatial resolution over the domain
of interest, e.g., resulting in a fine grid with each pixel yielding
a high-dimensional LiDAR signal. In practice, a variety of non-
statistical approaches are then used to characterize the LiDAR
signals—effectively a dimension reduction step, Anderson et al.
(2008), Gonzalez et al. (2010), Muss et al. (2011), Tonolli et al. (2011),
Popescu and Zhao (2008), and Babcock et al. (2013). These signal
characteristics serve as regressors in models where the outcome
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forest variables are measured at a relatively small set of geo-
referenced forest inventory plots. The regression model is then
used to predict the forest outcome variables at all LiDAR pixels
across the domain. This approach works well for small-scale forest
variable mapping efforts. However, next generation LiDAR acquisi-
tion campaigns aimed at mapping and quantifying variables over
large spatial extents, such as ICESat-2 (Abdalati et al., 2010; ICESat-2,
2015), Global Ecosystem Dynamics Investigation LiDAR (GEDI) (GEDI,
2014), and NASA Goddard’s LiDAR, Hyper-spectral, and Thermal (G-
LiHT) imager (Cook et al., 2013; Stockton, 2014), will collect LiDAR
data samples from the domain of interest, e.g., using transect or clus-
ter designs. The designs specify point-referenced LiDAR sampling
across the domain extent and also over forest inventory plot loca-
tions (again for regression model calibration). In such settings the
primary objective is still delivery of high resolution wall-to-wall
predictive maps of forest variables, but also corresponding maps of
LiDAR signal predictions at non-sampled locations. Further, to inform
future LiDAR collection sampling designs, there is interest in char-
acterizing the spatial dependence of within and, more importantly,
among LiDAR signals. This information can help guide LiDAR sam-
pling strategies with the aim to maximize some information gain
criterion; see, e.g., Xia et al. (2006), and Mateu and Müller (2012).

We propose a flexible framework to jointly model spatially mis-
aligned LiDAR signals and forest inventory plot outcomes (e.g., AGB)
that will i) automatically (i.e., no explicit variable selection step)
extract information from the high-dimensional LiDAR signals to
explain variability in the forest variable of interest, ii) estimate
spatial dependence among and within LiDAR signals to improve
inference and possibility help inform future LiDAR sampling strate-
gies, and iii) provide full posterior predictive inference for both LiDAR
signals and forest variables at locations where either one or neither
of the data sources are available (i.e., wall-to-wall prediction).

Meeting these objectives is particularly challenging for several
reasons. From a computational standpoint each LiDAR signal is high-
dimensional and the signals as well as the forest inventory plots are
observed at a potentially large number of locations. From a model
specification standpoint there are several sources of dependence that
should be accommodated, including i) within and between LiDAR
signals, ii) between LiDAR signals and spatially proximate forest
variable measurements, and iii) residual spatial dependence in the
signals and forest variables. These dependencies often result from
strong vertical and horizontal similarities in forest structure caused
by past management and/or natural disturbances.

Our primary methodological contribution is the development
of a modeling framework for high-dimensional misaligned data.
Given the rich inference we seek (see preceding paragraph), our
Bayesian hierarchical framework jointly models LiDAR signals and
forest variables as a random process using latent Gaussian processes
(GPs). This considerably enhances the computational burden of
fitting them to datasets with a large number of spatial locations. The
costs are exacerbated further by even a modest number of heights
at which the LiDAR signal is observed. We achieve dimension reduc-
tion through bias-adjusted reduced-rank representations of the joint
LiDAR-AGB process.

The manuscript is organized as follows. Section 2 provides an
overview of the motivating dataset that comprises G-LiHT LiDAR and
AGB measured at forest inventory plots on the Penobscot Experimen-
tal Forest (PEF) in Bradley, Maine. Section 3 describes the proposed
hierarchical model for the joint LiDAR-AGB process. The details on
Bayesian prediction and implementation are given in the Supple-
mental material. Section 4 offers an analysis of a synthetic dataset
and PEF analysis. Finally, Section 5 concludes the manuscript with a
brief summary and pointers toward future work.

2. Data

The PEF is a 1600 ha tract of Acadian forest located in Bradley,
Maine (44◦ 52′ N, 68◦ 38′ W). The forest is divided into over 50
management units (MU)—delineated as black polygons in Fig. 1 (a)—
that received management and monitoring since the 1950s (Sendak
et al., 2003). Within each MU, different silvicultural treatments are
implemented, e.g., unregulated harvest, shelterwood, diameter limit
cutting, or natural regeneration. Following procedures described in
Finley et al. (2014), AGB (Mg/ha) was calculated for each of 451 per-
manent sample plots (PSPs) across the PEF, shown as point symbols
in Fig. 1 (a). The underlying surface in Fig. 1 (a) was generated by
passing the point-referenced AGB through a deterministic surface
interpolator. Due to MU specific harvesting and subsequent regrowth
cycles, the surface exhibits patterns of spatial dependence with
relatively strong homogeneity within MUs. For example, MU U7B—
highlighted in Fig. 1 (a)—received a shelterwood harvest in 1978 with
a final overstory harvest in 2003. This silvicultural treatment results
in a MU with relatively young trees and even-aged composition with
low AGB (indicated by a lighter surface color in Fig. 1 (a)). In contrast
to U7B, C12 is characterized by older and larger trees, but also greater
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Fig. 1. (a) Penobscot Experimental Forest, Maine, with management units and forest inventory plot locations delineated as polygons and points, respectively. (b) G-LiHT LiDAR
signals observed at forest inventory plots highlighted in (a).
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