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Reliable and timely information on agricultural production is essential for ensuring world food security. Freely
availablemedium-resolution satellite data (e.g. Landsat, Sentinel) offer the possibility of improved global agricul-
ture monitoring. Here we develop and test a method for estimating in-season crop acreage using a probability
sample of field visits and producing wall-to-wall crop type maps at national scales. The method is illustrated
for soybean cultivated area in the US for 2015. A stratified, two-stage cluster sampling design was used to collect
field data to estimate national soybean area. The field-based estimate employed historical soybean extent maps
from the U.S. Department of Agriculture (USDA) CroplandData Layer to delineate and stratify U.S. soybean grow-
ing regions. The estimated 2015 U.S. soybean cultivated area based on the field sample was 341,000 km2 with a
standard error of 23,000 km2. This result is 1.0% lower than USDA's 2015 June survey estimate and 1.9% higher
than USDA's 2016 January estimate. Our area estimate was derived in early September, about 2 months ahead
of harvest. To map soybean cover, the Landsat image archive for the year 2015 growing season was processed
using an active learning approach. Overall accuracy of the soybeanmapwas 84%. The field-based sample estimat-
ed area was then used to calibrate the map such that the soybean acreage of the map derived through pixel
counting matched the sample-based area estimate. The strength of the sample-based area estimation lies in
the stratified design that takes advantage of the spatially explicit cropland layers to construct the strata. The suc-
cess of the mapping was built upon an automated system which transforms Landsat images into standardized
time-series metrics. The developed method produces reliable and timely information on soybean area in a
cost-effective way and could be applied to other regions and potentially other crops in an operational mode.
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1. Introduction

Reliable and timely information on agricultural production is essen-
tial for ensuring world food security. Traditionally, agricultural data are
acquired through census and ground survey. While ground-based data
collection has the advantage of obtaining awide range of variables relat-
ed to the organizational structure of agriculture, such as land tenure,
farm size, labor, crop area, irrigation, and fertilizer use, agricultural cen-
suses are usually undertaken at a decadal frequency and thus they are
most suitable to represent those aspects of agriculture that change
slowly over time (FAO, 2015). Using census data across the globe
would also encounter the data inconsistency problem, including incon-
sistent definitions of census variables, changing political or sampling

units and various reporting protocols among different countries and
census intervals (Portmann et al., 2010; Ramankutty et al., 2008).

Satellite observations, owing to their synoptic and repetitive nature,
have the unique advantage of providing timely and spatially contiguous
information on crop growth at regional to global scales. However, iden-
tification of crop type using satellite data remains a technical challenge
due to the diversity of cropping systems, including crop types, crop va-
rieties, management practices and field sizes. Thus, global cropland
monitoring requires data of high spatial and temporal resolutions
(Cihlar, 2000; Fritz et al., 2015; Thenkabail et al., 2010; Waldner et al.,
2016). To date, satellite data of fine temporal resolution and coarse spa-
tial resolution are predominantly used in agricultural research, especial-
ly over large areas. For example, data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) have been extensively used in
cropland mapping (e.g. Chang et al., 2007; Lobell and Asner, 2004;
Ozdogan, 2010; Wardlow and Egbert, 2008), as well as yield estimation
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(e.g. Anderson et al., 2016; Becker-Reshef et al., 2010; Bolton and Friedl,
2013; Doraiswamy et al., 2005; Johnson, 2014; Lopresti et al., 2015). At
the global scale, cropland is often characterized as one or a few aggre-
gated land cover classes at moderate to coarse resolutions (30 m–
1 km) (e.g. Friedl et al., 2002; Gong et al., 2013; Hansen et al., 2000).
Crop-specific masks are available at even coarser resolutions (~10 km)
(Portmann et al., 2010; Ramankutty et al., 2008; Thenkabail et al.,
2009; You et al., 2014). Since the opening of the Landsat archive in
year 2008, the recent launch of Landsat 8 and Sentinel-2, medium-res-
olution data have shown great potential of producing rich temporal in-
formation that is previously available only with coarse-resolution data
(Hansen et al., 2014; Roy et al., 2010). Studies have begun to take this
opportunity in research on crop classification (e.g. Zhong et al., 2014)
and yield estimation (e.g. Lobell et al., 2015) albeit over small areas.

The idea of using satellite data in operational agricultural surveys
was formulated in the 1970s and exploratory programswere soon initi-
ated, such as the Large Area Crop Inventory Experiment (LACIE)
(Macdonald and Hall, 1980), Agriculture and Resources Inventory Sur-
veys through Aerospace Remote Sensing (AgRISTARS) and Monitoring
Agriculture with Remote Sensing (MARS) (https://ec.europa.eu/jrc/en/
mars). Today, two prominent examples of operational use of medium-
resolution satellite data for national-scale crop type mapping are the
Cropland Data Layer (CDL) generated by the United States Department
of Agriculture (USDA) (Johnson andMueller, 2010) and the Crop Inven-
tory (CI) dataset generated by the Agriculture and Agri-Food Canada
(AAFC). CDL has been produced annually since 2008 and CI has been
produced annually since 2011, both with national coverage and at 30–
56 m of spatial resolutions. Both CDL and CI are generated using super-
vised classification approaches and rely on comprehensive survey-
based geospatial data for training. The sheer volume of the training
data contributes to producing highly accurate maps, both over 85% for
major crops in major agricultural states (AAFC, 2015; Boryan et al.,
2011). However, not only are these training datasets not publically
available, but they are also financially expensive and time-consuming
to generate and update every year. Such datasets or the capacity to gen-
erate them may not be readily available in other countries, especially
developing countries. Therefore, the methodology for producing CDL
or CI is difficult to implement elsewhere.

Crop classification maps of high overall accuracy such as CDL and CI
cannot be directly used through “pixel counting” for acreage estimation,
because map products are usually biased due to misclassification and
the existence of mixed pixels (Gallego, 2004). One way of deriving
crop acreage and uncertainty estimates is to use a probability sample
in an area sampling frame (AFS) (Carfagna and Gallego, 2005; Cotter
and Tomczack, 1994; Pradhan, 2001). The classification map can be
used as an ancillary variable and survey estimates as the dependent var-
iable to perform regression analysis (Boryan et al., 2011; Gallego et al.,
2014; Gonzáles-Alonso and Cuevas, 1993; Gonzáles-Alonso et al.,
1991; Hill andMegier, 1988). Map-making and sample-based area esti-
mation are often carried out as independent processes. But opportuni-
ties exist to reconcile the discrepancy of map-based and sample-based
area estimates by closely integrating the two processes. Such a general
approach has been successfully applied for mapping and estimating
areas of forest cover change at continental to global scales (Broich et
al., 2011; Hansen et al., 2010; Hansen et al., 2008b; Tyukavina et al.,
2015).

The objective of this study is to develop a method applicable at na-
tional scales for estimating in-season cultivated area for a specific crop
as well as to produce a spatially explicit crop cover map. Specifically,
we estimate soybean cultivation area in the United States in year 2015
using a probability sample of field visits and we map soybean cover
using all available Landsat data in the growing season of the year
2015. Soybean in the U.S. is chosen not only because the U.S. is the
world's leading producer of thismajor commodity crop but also because
independent data exist to provide a comparison with our results. The
developed procedure is expected to be applicable to other crops and

to other regions such as Brazil and Argentinawhere industrialmonocul-
ture dominates agricultural production.

2. Data and methods

2.1. Sample-based soybean area estimation

2.1.1. Study area and sampling design
We implemented a two-stage cluster sampling design for estimating

national soybean area within the U.S. In the first stage, 20 km × 20 km
blocks (clusters)were selected using a stratified random sampling tech-
nique. In the second stage, 30 m × 30 m Landsat pixels were selected
using simple random sampling. The large agricultural fields in the
U.S.—mean size 0.193 km2 and median size 0.278 km2 (Yan and Roy,
2016), ensured that our 20km×20 kmblocks contained a large number
of fields whereas the majority of our 30 m × 30 m pixels were pure
pixels of a single crop. The cluster design was chosen to reduce the
cost of field visits by spatially constraining the sample pixels to the se-
lected clusters. The specific size of the cluster (20 km× 20 km)was cho-
sen because it allowed the second-stage sample for each cluster to be
completed in a single day.

The entire conterminous U.S. land area was divided into a regular
grid of 20 km × 20 km blocks consisting of 20,371 blocks. We acquired
the 30 m spatial resolution CDL for years between 2010 and 2014 and
calculated the 5-year average soybean percentage for every block. For
each block in each year,we counted the number of pixels labeled as soy-
bean and divided the number by the total number of pixels within the
block to compute the soybean percentage at the 20 km resolution. We
then computed the arithmetic mean of soybean percentage over
2010–2014 for every block. After sorting the blocks based on the
2010–2014 mean soybean percentage from the largest to the smallest,
the blocks that cumulatively accounted for 99.9% national soybean
area were selected to create the fixed population (N = 7028 blocks).

Two-stage stratified random samplingwas implemented, where the
population was divided into four strata according to soybean intensity
and a total of 70 sample blocks were randomly selected (Fig. 1,
Table 1). The strata definitions and sample sizes were guided by
evaluating the precision for estimating soybean area assuming the CDL
soybean area was the population of interest. That is, we used the CDL
soybean to obtain per-stratum means and variances and this allowed
us to compute the standard error of estimated soybean area for various
choices of strata and sample size allocation to strata (see Section 2.1.3
for estimation formulas). Based on these analyses, we determined that
a sample size of 70 blocks was affordable while still likely to yield esti-
mates that would have adequate precision to demonstrate the utility
of the approach.

The second-stage sampling was constrained to the cropland region
within each block to avoid visiting remote non-cropland sites, assuming
no significant land use conversion between cropland and non-cropland
within a year. We created a 2010–2014 maximum cropland mask for
each block. A 30 m × 30 m pixel was included in this cropland mask if
it was classified by CDL as cropland in any year between 2010 and
2014. Using simple random sampling, we selected 10 pixels within the
cropland mask of each first-stage sample block. A total of 700 pixels
were selected for field visit, 200 from each of the high, medium, and
low strata, and 100 from the very low stratum.

2.1.2. Collecting field data
The crop cover type of every sample pixel was obtained through

fieldwork conducted in middle-to-late August 2015. This time window
was chosen because soybean plants in the U.S. typically reach reproduc-
tive stages with maximum canopy cover during this time of year. This
optimal time was confirmed by satellite data. Soybean pixels exhibit
maximum normalized difference vegetation index (NDVI) (Tucker,
1979) on Julian date 225 in theMODIS 16-day composites, correspond-
ing to August 13–28 (Fig. 2).
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