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Forest vegetation classification and structuremeasurements are fundamental steps for planning,monitoring, and
evaluating large-scale forest changes including restoration treatments. High spatial and spectral resolution re-
mote sensing data are critically needed to classify vegetation and measure their 3-dimensional (3D) canopy
structure at the level of individual species. Here we test high-resolution lidar, hyperspectral, and multispectral
data collected fromunmanned aerial vehicles (UAV) and demonstrate a lidar-hyperspectral image fusionmethod
in treated and control forests with varying tree density and canopy cover aswell as in an ecotone environment to
represent a gradient of vegetation and topography in northern Arizona, U.S.A. The fusion performs better (88%
overall accuracy) than either data type alone, particularly for species with similar spectral signatures, but differ-
ent canopy sizes. The lidar data provides estimates of individual tree height (R2 = 0.90; RMSE = 2.3 m) and
crown diameter (R2 = 0.72; RMSE = 0.71 m) as well as total tree canopy cover (R2 = 0.87; RMSE = 9.5%)
and tree density (R2 = 0.77; RMSE = 0.69 trees/cell) in 10 m cells across thin only, burn only, thin-and-burn,
and control treatments, where tree cover and density ranged between 22 and 50% and 1–3.5 trees/cell, respec-
tively. The lidar data also produces highly accurate digital elevation model (DEM) (R2 = 0.92; RMSE =
0.75 m). In comparison, 3D data derived from the multispectral data via structure-from-motion produced
lower correlations with field-measured variables, especially in dense and structurally complex forests. The
lidar, hyperspectral, andmultispectral sensors, and themethods demonstrated here can bewidely applied across
a gradient of vegetation and topography for monitoring landscapes undergoing large-scale changes such as the
forests in the southwestern U.S.A.
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1. Introduction

Many forests across theworld are becoming increasingly susceptible
to fire, drought, insect outbreak, and disease due to climate change
(Foley et al., 2005; Trumbore et al., 2015). In response to this, forest
managers are proactively undertaking targeted, yet widespread forest
treatments such as thinning and prescribed burning to make forests
more resilient to climate change effects (Mast et al., 1999; Fulé et al.,
2001; Reynolds et al., 2013; Stephens et al., 2013). Remote sensing-
based classification of forest vegetation and measurement of forest
structure are fundamental and necessary steps for planning, monitor-
ing, and evaluating forest treatments (Roberts et al., 2004; Wulder et
al., 2004; Hyde et al., 2006; Hyyppä et al., 2001; Van Leeuwen and
Nieuwenhuis, 2010). Since many of the treatments are conducted at
the scale of individual treeswithin forests that containmany species, re-
mote sensing tools need to be spatially and spectrally sufficient to

classify and measure vegetation at the level of individual species and
canopies.

Here we focus specifically on the use of high spatial and spectral res-
olution data from UAVs to classify vegetation at the species level and to
measure structural characteristics of individual plant canopies in
ponderosa pine forests of Arizona, USA. The US Forest Service (USFS)
is launching a regional restoration effort in Arizona, known as the Four
Forest Restoration Initiative (4FRI), the first and largest restoration pro-
ject in US history, which will soon be adopted in other states across the
southwestern USA. The 4FRI will restore over a million hectares of
ponderosa pine forests in northern Arizona via thinning and prescribed
burning over the next 20 years (USDA, 2015) tomimic historic low den-
sity forests. As 4FRI modifies the forests, land managers must monitor
the treatments and evaluate their effectiveness. In particular, managers
need to measure changes in tree cover, density, and spatial distribution
and how they in turn influence other ecological processes such as
evapotranspiration, snow accumulation andmelt, soil and groundwater
recharge. Satellite images inmany cases cannot provide enough spectral
and spatial detail to classify andmeasure individual plants at the species
level for these types of forest treatments (Sankey and Glenn, 2011).
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Lidar data can be used for high-resolution estimates of tree cover
and density (Popescu et al., 2003; Bork and Su, 2007; Asner et al.,
2010; Koch, 2010) as well as individual tree height and diameter
(Hyyppä et al., 2001; Popescu, 2007; Sankey et al., 2013). Hyperspectral
data have been commonly used to classify vegetation at the species level
and detect target species (O'Neill et al., 2000; Root et al., 2004; Parker
Williams and Hunt, 2002; Noujdina and Ustin, 2008). Taken together,
lidar and hyperspectral data can offer unique and synergistic capabili-
ties leveraging the vertically and horizontally explicit estimates from
each data source. Previous efforts have integrated lidar derivatives
with hyperspectral and multispectral data (Anderson et al., 2008;
Dalponte and Burzzone, 2008; Wulder et al., 2009; Ke et al., 2010).
While some of these fusion efforts have resulted in marginal improve-
ments in classification accuracies for forested environments (Hyde et
al., 2006), the fusion has been found particularly useful in rangeland en-
vironments (Bork and Su, 2007; Sankey et al., 2010), which can contain
amixture of trees, shrubs, forbs and grass species andwhere vegetation
structural characteristics therefore often vary among species. A fusion of
UAV-based lidar and hyperspectral imagesmight further improve these
benefits due to the finer spatial and spectral resolution of UAV data.

1.1. Unmanned aerial vehicles

The use of UAVs is rapidly expanding and is expected to revolution-
ize remote sensing for thenatural sciences (Anderson andGaston, 2013;
Vivoni et al., 2014). In this study, we use and evaluate an octocopter
UAV and a fixed-wingUAV, two of thefirst platforms permitted to oper-
ate in the USA by the Federal Aviation Administration (FAA). UAV plat-
forms provide a unique opportunity for acquiring low-cost imagery at
fine spatial and temporal resolutions, from local to regional scales
(Anderson and Gaston, 2013; Bryson et al., 2014). Furthermore, they
can avoid some complications associated with other platforms, such as
plane flight logistics, satellite return times, cloud cover, and atmospher-
ic effects on imagery (Anderson andGaston, 2013). Specific applications
of UAV images include analysis of vegetation patterning and orientation
(Wallace et al., 2014; Paneque-Gálvez et al., 2014; Lin et al., 2015;
Chianucci et al., 2016), detecting plant stress and disturbance
(Zarco-Tejada et al., 2012; Getzin et al., 2014; Lehmannet al., 2015), bio-
diversity monitoring (Vas et al., 2015), land cover change detection
(Koh and Wich, 2012), precision agriculture (Hunt et al., 2010;
Guillen-Climent et al., 2012; Matese et al., 2015), and water resource
management (Vivoni et al., 2014; DeBell et al., 2015).

Recent advances in UAV sensors include lidar (Lin et al., 2015;
Wallace et al., 2012) and hyperspectral sensors (Zarco-Tejada et al.,
2012; Hruska et al., 2012), although visible (RGB) and near-infrared
(NIR) imagery have been most commonly used on UAV platforms
(Valavanis and Vachtsevanos, 2015) along with multispectral (Nebiker
et al., 2008) and thermal sensors (Berni et al., 2009). Hyperspectral
sensors aboard UAVs is expected to enhance remote sensing research
in the natural sciences (Anderson and Gaston, 2013; Valavanis and
Vachtsevanos, 2015). Similarly, UAV-based lidar scanners will provide
high-resolution topographic models and key measurements necessary
for geomorphic, hydrological, and geomorphological modelling
(Sankey et al., 2010; Sankey et al., 2012). The 3D individual tree canopy
estimates can provide inputs for total aboveground biomass measure-
ments and carbon estimates for carbon sink and source calculations at
the landscape scale (Lefsky et al., 2002; Patenaude et al., 2004; Sankey
et al., 2013). UAV-based 3D models have thus far provided “synthetic”
data generated from simple RGB andmultispectral images using photo-
grammetric methods including structure from motion (SfM) (Neitzel
and Klonowski, 2011; Niethammer et al., 2012; Guillen-Climent et al.,
2012; Dandois and Ellis, 2013; Lisein et al., 2013; Harwin et al., 2015).
SfM-derived 3Dmodels, however, can have errors too large for applica-
tions such as topographic and vegetation change detection due to geo-
morphic processes and vegetation growth, respectively (Niethammer
et al., 2012; Dandois and Ellis, 2013), although they have accuracies

adequate for many other applications compared to traditional laser-de-
rived models (Neitzel and Klonowski, 2011; Niethammer et al., 2012;
Fonstad et al., 2013).

1.2. Objectives

We use the octocopter UAV lidar and hyperspectral sensors and the
fixed-wing UAVmultispectral sensor to classify and measure the struc-
tural characteristics of individual canopies in ponderosa pine forest and
ecotone vegetation in northern Arizona. Using the individual datasets
from the octocopter UAV, we first estimate: 1) presence and sub-pixel
abundance of eight different cover types including tree, shrub, and her-
baceous species in 12-cm resolution hyperspectral data, 2) individual
tree canopy height and diameter along with 3D tree segmentation and
bare earth DEM using the lidar data, and 3) tree canopy cover and den-
sity (number of trees) per 10-m cells among different forest treatment
types using the lidar data. We then fuse the hyperspectral classification
and lidar-derived canopy height estimates to produce a final land cover
type map. We hypothesize that the fusion of lidar and hyperspectral
data would perform better than either data type alone for classifying
multiple vegetation species in areas where spectral signatures between
species are similar, but their sizes are different. We also assess the spec-
tral and geometric accuracies of the hyperspectral and lidar data by
comparing them to field-based GPS (Trimble GeoXH), ground-based
spectroradiometer (ASD), and terrestrial laser scanner (Riegl VZ-1000
georeferenced with TOPCON GR3 RTK-GPS) data.

Secondly, we estimate tree canopy cover in 10-m cells using the
fixed-wing UAVmultispectral data with 15-cm resolution and generate
a structure from motion (SfM) 3D point cloud to estimate tree density,
individual tree height and diameter, and bare earth DEM.We then eval-
uate the SfM-derived 3D vegetation models and DEMs to determine if
the commonly used, more affordable fixed-wing UAV SfM-derived
models perform equally well compared to the octocopter UAV lidar-de-
rived models.

2. Methods

2.1. UAV platforms and sensors

The octocopter aircraft (Service-Drone, Germany)weighs 5.5 kg and
was developed to carry an additional heavy payload of up to 6.5 kg
(Fig. 1). The flight duration is relatively limited at 9 min per mission
due to the heavy payload and battery capabilities. The octocopter is con-
trolled via a hand-held remote control transmitter and a ground control
station with navigation data link, which sends waypoint navigation in-
formation to the aircraft from a laptop computer. Pre-programmed
flight mission plan is made in a software known as GroundStation,
where the flight path, flight altitude, and speed are user defined. The
flight path information is converted and transferred as waypoint navi-
gation data to the UAV GPS. For additional safety, the octocopter UAV
is launched and landed manually with the remote control transmitter,
although it automatically navigates to the waypoints once it reaches
the pre-defined flight altitude. The platform has a redundant design
and is stable in windy conditions up to 15 m/s. The octocopter was cus-
tom-designed to carry an inertial navigation system (INS), a lidar scan-
ner, and a hyperspectral sensor with a data storage unit on a 3-axis
gimbal. The INS has an integrated survey-grade Global Navigation
Satellite System (GNSS) and an inertial motion unit (IMU) that correct
for errors associated with pitch, roll, and heading (0.05°, 0.05° and
0.5° RMS, respectively) (SBG Systems North America, Inc., Chicago, IL).
The hyperspectral sensor is a pushbroomnano-sensorwith 272 spectral
bands ranging 400–1000 nm (Headwall Photonics Inc., Fitchburg, MA).
The hyperspectral sensor can operate at a large range of flight altitudes
resulting in various spatial resolutions and image extents depending on
flight altitude. The hyperspectral sensor was integrated with the
onboard data storage, GNSS INS/IMU, and a Velodyne HDL-32E lidar
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