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Many applications require soil moisture estimates over large spatial extents (30–300 km) and at fine-resolutions
(10–30 m). Remote-sensing methods can provide soil moisture estimates over very large spatial extents (conti-
nental to global) at coarse resolutions (10–40 km), but their outputmust be downscaled to reach fine resolutions.
When large spatial extents are considered, the downscaling proceduremust consider multiple coarse-resolution
grid cells, yet little attention has been given to the treatment ofmultiple grid cells. The objective of this paper is to
compare the performance of different methods for addressingmultiple coarse grid cells. To accomplish this goal,
the EquilibriumMoisture from Topography, Vegetation, and Soil (EMT+ VS) downscaling model is generalized
to accept multiple coarse grid cells, and two methods for their treatment are implemented and compared. The
first method (fixed window) is a direct extension of the original EMT + VS model and downscales each coarse
grid cell independently. The second method (shifting window) replaces the coarse grid cell values with values
that are calculated from windows that are centered on each fine grid cell. The window values are weighted av-
erages of the coarse grid values within the window extent, and three weighting methods are considered (box,
disk, and Gaussian). Themethods are applied to three small catchments with detailed soil moisture observations
and one large region. The fixed window typically provides more accurate estimates of soil moisture than the
shifting window, but it produces abrupt changes in soil moisture at the coarse grid boundaries, which may be
problematic for some applications. The three weighting methods produce similar results.
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1. Introduction

Numerous applications can benefit from knowledge of volumetric
water content (soil moisture) at fine resolutions (10–30 m) over large
spatial extents (30–300 km). For example, land-atmosphere models
[Delworth and Manabe, 1989; Entekhabi et al., 1996; Ferranti and
Viterbo, 2006], precipitation forecasting models [Koster and Suarez,
2003; Seuffert et al., 2002], regional and global climate models
[Dirmeyer, 1999; Mahfouf et al., 1987; Seuffert et al., 2002], and hydro-
logic models at all scales [Houser et al., 1998; Lakshmi, 1998; Wood,
1997] would benefit from reliable soil moisture information. Similarly,
soil moisture is important for flood forecasting [Beck et al., 2009;
Dunne and Black, 1970], drought monitoring and wildfire prediction
[Bartsch et al., 2009; Bolten et al., 2010], crop growth and forest re-
growth after wildfires [de Wit and van Diepen, 2007; Kasischke et al.,
2007], and malaria outbreak modeling [Montosi et al., 2012]. Soil mois-
ture is an important variable in soil mechanical stability [Horn and

Fleige, 2003], which is relevant in trafficability [Flores et al., 2014] and
vehicle impact assessment and land rehabilitation [Shoop et al., 2005;
Vero et al., 2014].

Satellite remote sensing can provide soil moisture estimates with
the spatial extents necessary for such applications, but the spatial reso-
lutions of these estimates are much too coarse. Several passive radiom-
eters have been used to obtain global soilmoisture at coarse resolutions.
For example, the AdvancedMicrowave Scanning Radiometer (AMSR-E)
uses dual polarized size frequencies in the range of 6.9–89 GHz to esti-
mate soil moisture at resolutions of 5–60 km, where the coarser resolu-
tions have smaller errors than the finer resolutions [Njoku et al., 2003].
Li et al. [2010] describes a physically-based land algorithm that simulta-
neously acquires global soil moisture, vegetation water content, and
land surface temperature using WindSat dual polarized data at 10,
18.7, and 37 GHz, resulting in 10–40 km resolution soil moisture esti-
mates. The Soil Moisture Ocean Salinity Mission (SMOS) uses an L-
band (1.4 GHz) synthetic aperture radiometer to estimate soil moisture
and ocean salinity at a 40 km resolution [Kerr et al., 2012; Kerr et al.,
2010]. Active microwave sensing has also been used to estimate soil
moisture. In particular, the Advanced Scatterometer (ASCAT) produces

Remote Sensing of Environment 199 (2017) 187–200

⁎ Corresponding author.
E-mail address: jeffrey.niemann@colostate.edu (J.D. Niemann).

http://dx.doi.org/10.1016/j.rse.2017.07.021
0034-4257/© 2017 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2017.07.021&domain=pdf
http://dx.doi.org/10.1016/j.rse.2017.07.021
mailto:jeffrey.niemann@colostate.edu
Journal logo
http://dx.doi.org/10.1016/j.rse.2017.07.021
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse


backscattermeasurements from transmitted linear frequency-modulat-
ed pulses (C-band) to estimate global soil moisture at a 25 km resolu-
tion [Bartalis et al., 2007]. The Soil Moisture Active and Passive
(SMAP) mission combines active and passive microwave sensing to ob-
tain 9 km resolution global soil moisture, but currently only the passive
radiometer is operational [Das et al., 2011; Entekhabi et al., 2010].

One general approach for downscaling soil moisture to appropriate
resolutions is to use optical/thermal data. Suchmethods typically down-
scale to about a 1 km resolution because the most frequently collected
optical/thermal data are available at this resolution. For example,
Chauhan et al. [2003] downscaled soil moisture from 25 km to 1 km
using an approach based on the Triangle Method. Merlin et al. [2005]
downscaled 40 km SMOS data to a 1 km resolution using visible, near-
infrared, and thermal infrared remote sensing data. Merlin et al.
[2006] added the use of a land surface model and tested this approach.
Disaggregation Based on Physical and Theoretical Scale Change (Dis-
PATCh) was also used to downscale SMOS data to 3 km and 100 m res-
olutions using Moderate Resolution Imaging Spectroradiometer
(MODIS), Advanced Spaceborne thermal Emission and Reflection radi-
ometer (ASTER), and Landsat 7 data [Merlin et al., 2013]. Fang and
Lakshmi [2014] disaggregated SMOS and AMSR-E data to a 1 km resolu-
tion and compared the results to in situ observations. Using similar data
in an empirical algorithm, Song et al. [2014] downscaled 25 kmAMSR-E
data to 1 km using optical/thermal data, and it was more effective for
soil moisture values b0.3 m3/m3.

Another group of downscaling methods focus on reproducing the
statistical properties of fine scale soil moisture rather than providing ac-
curate estimates at every location. For example, Crow et al. [2000] used
a statistical approach to downscale spaceborne imaging radar (SIR-C) L-
band data. They studied how patternswith 800–6400m grid cells relate
to finer (100–800 m) patterns. Kim and Barros [2002] used a modified
fractal interpolation method based on contraction mapping to down-
scale soil moisture from 10 km to 825 m. Mascaro et al. [2011] applied
a multifractal downscaling model to obtain soil moisture at the aircraft
footprint scale of 800 m from a satellite footprint scale of 25.6 km.

Other statisticalmethods have been used to estimate soilmoisture at
fine resolutions. Perry and Niemann [2007] applied an Empirical Or-
thogonal Function (EOF) approach to the Tarrawarra catchment (down-
scaling from a catchment-wide average to a 20 m by 10 m resolution).
However, thismethod requires local soil moisturemeasurements to de-
rive the EOFs. In a similar manner, Kaheil et al. [2008] downscaled soil
moisture based on local measurements. The Southern Great Plains
(SGP 97) dataset (from airborne imagery) was downscaled from a
coarse resolution of 800 m to a fine resolution of 50 m.

Other downscaling methods use topographic data, which is known
to affect soil moisture variations at particularly fine resolutions
[Famiglietti et al., 1998; Gomez-Plaza et al., 2001; Western et al.,
1999]. Wilson et al. [2005] downscaled soil moisture in five catchments
to 10–40 m resolutions using empirical relationships with topographic
attributes. Busch et al. [2012] extended the EOF method of Perry and
Niemann [2007] by estimating the soil moisture EOFs from topographic
data, and Coleman and Niemann [2013] used a conceptual water bal-
ance called the Equilibrium Moisture from Topography (EMT) model
to downscale a catchment-wide average soil moisture to 10–40 m pat-
terns at three catchments. In some cases, topographic downscaling
methods also use other types of data. Pellenq et al. [2003] presented a
model to downscale soil moisture to a 100 m resolution at the
Nerrigundah catchment using both topographic and soil depth informa-
tion. Temimi et al. [2010] used an index that combines topographic at-
tributes and the leaf area index (LAI) to estimate soil moisture at a
90 m resolution. Ranney et al. [2015] generalized the Coleman and
Niemann [2013] model to accept fine scale soil and vegetation data
and called it the Equilibrium Moisture from Topography, Vegetation,
and Soil (EMT + VS) model. Using this approach, vegetation data
were found to providemore value for downscaling than soil data, partic-
ularly if the soil data are sparse or uncertain.

When any of these downscalingmethods are used over large spatial
extents, they must inevitably accept and downscale multiple coarse-
resolution grid cells (i.e. a coarse grid of soil moisture values rather
than a single average soil moisture value). Some studies have not en-
countered this issue because they have focused on downscaling within
an area that falls within a single coarse grid cell [Busch et al., 2012;
Coleman and Niemann, 2013; Pellenq et al., 2003; Perry and Niemann,
2007; Ranney et al., 2015; Wilson et al., 2005]. Other studies have
downscaled multiple coarse grid values but have not considered this
issue in depth. Some of these algorithms downscale each coarse grid
cell independently from the adjacent coarse grids [Fang and Lakshmi,
2014;Merlin et al., 2013;Merlin et al., 2012], but the resulting soilmois-
ture maps show unnatural discontinuities in the soil moisture values at
the coarse grid boundaries. Such discontinuities might be problematic
for applications like routing vehicles across the landscape [Flores et al.,
2014]. Song et al. [2014] downscaled in a way that uses information
from neighboring coarse grid values and avoids such discontinuities.
Only a few studies have directly discussed the treatment of multiple
coarse grid cells [Kaheil et al., 2008; Kim and Barros, 2002; Sahoo et
al., 2013]. Kim and Barros [2002] used a sliding window to statistically
downscale soilmoisture and avoid the discontinuities at the boundaries.
Kaheil et al. [2008] applied a spatial pattern search where pixels are
sorted and interpolated to overcome the issue. Sahoo et al. [2013]
used a localization radius (distance from fine grid cell being down-
scaled), which is a function of the spatial correlation of the errors, to de-
termine which coarse grids affect each particular fine grid pixel.
Malbeteau et al. [2016] and Merlin et al. [2012, 2013] took advantage
of the overlapping grid cells of SMOS data by downscaling each grid
cell indepedently and then averaging the fine resolution results. How-
ever, no studies have examined the treatment of multiple grid cells for
topographically-based downscaling methods or considered how their
treatment affects the downscaling performance.

The objective of this paper is to develop and test approaches for
accepting multiple coarse grid cells when downscaling soil moisture.
In particular, the EMT + VS model is generalized to accept multiple
coarse grid cells, and approaches for treating the coarse grids are imple-
mented and compared. The EMT + VS model is selected because it is a
flexible topographically-based downscaling method. This flexibility al-
lows it to reproduce both valley-dependent and hillslope-dependent
soil moisture patterns, and it can reproduce temporally unstable soil
moisture patterns [Coleman and Niemann, 2013]. It has also been
shown to outperform a statistical downscaling method when calibra-
tion data are limited [Werbylo and Niemann, 2014]. The methods for
accepting multiple coarse grid cells are evaluated by application to
three small catchments (Tarrawarra, Cache la Poudre, andNerrigundah)
and one large region (Eastern Victoria).

2. Methodology

2.1. EMT + VS model overview

This sub-section briefly summarizes the pre-existing EMT + VS
model. More details can be found in Coleman and Niemann [2013]
andRanney et al. [2015]. The EMT+VSmodel downscales soilmoisture
using a water balance of the hydrologically active soil layer. That layer
begins at the ground surface and ends at the depthwhere the hydraulic
conductivity begins to decrease significantly due to a lower permeabil-
ity soil layer or bedrock. The hydrologically active layer has ranged from
5 cm and 30 cm depth in past model applications [Ranney et al., 2015].
Over this range of depths, soil moisture is assumed to be uniform.

Four processes are represented in the water balance: infiltration,
deep drainage (or groundwater recharge), lateral flow, and evapotrans-
piration (ET). Each process is written as a function of topographic, veg-
etation, and soil characteristics. Infiltration uses the fractional
vegetation cover to account for interception losses. Deep drainage is de-
scribed using Darcy's Lawwith a percolation assumption. Lateral flow is
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