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A B S T R A C T

Accuracy assessment of remote sensing soft (sub-pixel) classifications is a challenging topic. Previous efforts
have focused on constructing a soft classification error matrix and producing summary measures to describe
overall and per-class map accuracy. However, these summary assessments do not provide information on the
spatial distribution of the soft classification error as distributed at the individual pixel level. This is important
because the map error of a given class may vary considerably over different regions. Spatial interpolation has
been previously used for predicting soft classification error at the pixel level. Here, we propose two alternative
domains for soft classification error interpolation, the spectral and mapped class proportion domains. In the
spectral domain we interpolate errors in the classification feature space, whereas in the mapped class proportion
domain interpolation takes place in a space with dimensions defined by the mapped class proportions (i.e., the
output of the soft classification). The two newly proposed prediction methods (spectral domain and mapped
class proportion domain), spatial interpolation, and a summary measure method were evaluated using 23 test
regions, each 10 km × 10 km, distributed throughout the United States. These 10 km × 10 km blocks had
complete coverage reference data (where the reference classification was determined by manual interpretation)
and the predicted error maps were then evaluated by comparing them to these complete coverage reference error
maps. Mean absolute error was used to quantify the agreement of the predicted error maps to the reference error
maps. The spectral and mapped class proportion methods generally outperformed the spatial interpolation and
the summary measure methods both in terms of smaller mean absolute error and visual similarity of predicted
error maps to the reference error maps. The superiority of the new methods over spatial interpolation is an
important result because spatial interpolation is a familiar method analysts would commonly consider for
modeling spatial variation of classification error. The predicted soft classification error maps provide a
straightforward visual assessment of the spatial patterns of error that can accompany the original classification
products to enhance their value in subsequent analysis and modeling tasks. Furthermore, from the standpoint of
implementation, our methods do not require additional datasets; the same test dataset currently used for con-
fusion/error matrix construction can be used for our error interpolation methods.

1. Introduction

Classified land-cover maps have become one of the most important
products of remote sensing science and industry enabling environ-
mental and natural resources monitoring, modeling and management
from local to global spatial extents. Land-cover maps are essential in-
puts for a broad range of applications such as forest and carbon mon-
itoring (Carreiras et al., 2012; Dong et al., 2003; Eva et al., 2012; Réjou-
Méchain et al., 2014); environmental change detection (Roy et al.,
2014; Wulder et al., 2008); climate studies (Grimm et al., 2008;
Seneviratne et al., 2010); and hydrological modeling (Khan et al., 2011;

Nie et al., 2011; Sorooshian et al., 2014). Significant work has been
done by the remote sensing community to improve the associated
classification processes and to increase the accuracy of classified land-
cover maps (Cihlar, 2000; Franklin &Wulder, 2002; Gómez et al., 2016;
Khatami et al., 2016; Lu &Weng, 2007). Land-cover classification can
be generally divided into two major categories, hard and soft classifi-
cations. In hard classifications, each pixel is assigned to a single class,
whereas in soft classification, a pixel may belong to multiple classes and
different levels of class membership or proportion are assigned. Soft
classifications can potentially be very useful when a large number of
mixed pixels exists in an image (Foody & Doan, 2007; Paneque-Gálvez
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et al., 2013; Tsutsumida et al., 2016), as for example when the scene is
heterogeneous and the pixel size is larger than the size of the objects of
interest.

Whether a hard or soft classification is implemented, it is important
to quantify classification error. The accuracy assessment of a hard
classification is typically reported through the error or confusion matrix
and summary measures derived from it that describe the accuracy of the
entire map or a class (Foody, 2002; Olofsson et al., 2014;
Stehman & Czaplewski, 1998; Story & Congalton, 1986). In addition,
per-pixel classification accuracy prediction methods for hard classifi-
cation have been investigated to produce maps depicting the spatial
distribution of classification accuracy (Comber et al., 2012; Comber,
2013; Foody, 2005; Khatami et al., 2017; Kyriakidis & Dungan, 2001;
Steele et al., 1998; Tsutsumida & Comber, 2015) or classification con-
fidence (Mountrakis & Xi, 2013). Khatami et al. (2017) also investigated
factors affecting per-pixel accuracy interpolation of hard classifications.

Accuracy assessment of soft classifications is more challenging be-
cause the concept of the error matrices typically used in hard classifi-
cations cannot be directly applied for soft classifications. Efforts to
construct error matrices for soft classification analogous to those ap-
plicable to a hard classification include fuzzy error matrix (Binaghi
et al., 1999; Stehman et al., 2007) and soft classification error matrix
(Latifovic & Olthof, 2004; Pontius Jr. & Cheuk, 2006). Generally, the
objective is to build an error matrix for each test pixel based on the
reference class proportions and mapped (from soft classification) class
proportions. Error matrices for all test pixels can then be aggregated to
produce a single estimated error matrix for the entire map. Summary
measures such as overall, user's, and producer's accuracies can be es-
timated from the aggregated error matrix. However, because the spatial
distribution of the reference and mapped class proportions within each
test pixel is unknown, it is not possible to exactly determine the true
overlap among reference and mapped classes and obtain the true error
matrix for each test pixel. This issue is known as “sub-pixel area allo-
cation problem” (Silván-Cárdenas &Wang, 2008). Many approaches or
operators have been devised to allocate the overlap among reference
and mapped class proportions to construct the error matrix of a given
test pixel. Some of these methods include fuzzy minimum operator
(Binaghi et al., 1999); composite operator (Pontius Jr. & Cheuk, 2006);
product operator (Lewis & Brown, 2001); similarity index (Townsend,
2000); and confusion intervals (Silván-Cárdenas &Wang, 2008). Silván-
Cárdenas &Wang (2008) introduced a series of characteristics for an
ideal per-pixel confusion matrix and discussed whether different op-
erators could result in error matrices that hold those characteristics.

Another group of methods employed for accuracy assessment of soft
classifications is based on directly measuring the proximity, similarity,
or correlation among the reference and mapped class proportions.
Commonly, an accuracy summary measure is calculated using test data
to describe how close the reference and mapped class proportion values
are for the entire classification or for a given class. Some of these
measures include Euclidian and city block distance (Foody, 1996;
Foody & Arora, 1996); root mean squared error (RMSE) (Carpenter
et al., 1999; Chen et al., 2010; Lu &Weng, 2006; Olthof & Fraser, 2007);
correlation coefficient (Foody & Cox, 1994; Maselli et al., 1996); en-
tropy (Finn, 1993; Maselli et al., 1994); cross-entropy (Foody, 1995);
information closeness (Foody, 1996); weighted disagreement (Gómez
et al., 2008); kappa coefficient (Homer et al., 2012); and Morisita's
index (Ricotta, 2004). Similarity can also be assessed in the context of
fuzzy logic (Foody, 1999; Gopal &Woodcock, 1994; Laba et al., 2002;
Woodcock & Gopal, 2000).

The summary measures derived from the two aforementioned gen-
eral categories of soft classification accuracy assessment are useful to
describe the classification accuracy at the general map scale. However,
the summary measures do not provide specific information about the
spatial distribution of the classification error. This is an important issue
because the classification accuracy would likely vary over different
regions of the map (Campbell, 1981; Chen &Wei, 2009; Congalton,

1988) and the summary measures may not be useful when the local
accuracy for an area of interest differs from the global accuracy
(Mcgwire & Fisher, 2001).

Classification errors affect the reliability of subsequent map use for
environmental analyses and modeling (Castilla & Hay, 2007; Ge et al.,
2007; Jin et al., 2014; McMahon, 2007; Straatsma et al., 2013). Because
classification accuracy varies over different map regions, subsequent
models would also inherit this spatial accuracy variation. Thus, en-
vironmental modeling can be greatly enhanced if local estimates of
classification accuracy or error are available (DeFries & Los, 1999;
Gahegan & Ehlers, 2000; Miller et al., 2007). Consequently, in this re-
search we focus on pixel-level error map construction for land-cover
maps created by soft classification of remotely sensed imagery. Spatial
interpolations have been previously suggested to create error maps for
soft classifications (Comber, 2013; Foody, 2005). In this manuscript, we
introduce spectral and mapped class proportion domains as the ex-
planatory domain for error prediction, domains that to the best of our
knowledge have not been previously explored for error interpolation of
soft classifications. The performances of the spectral and mapped class
proportion interpolation methods are compared to two benchmark
methods, a map-level summary measure and a spatial interpolation
method.

The rest of the manuscript is organized as follows. In Section 2, the
datasets including the reference data and satellite images used to
evaluate the soft classification error mapping methods along with input
data preprocessing are presented. The details of the four error predic-
tion methods are explained in Section 3. In Section 4, the research
experimental design and the overall workflow is elaborated, including
details of the four main steps: (i) input data preprocessing, (ii) land-
cover soft classification, (iii) classification error map predictions (using
the methods discussed in Section 3), and (iv) evaluation of the pre-
dicted error maps. In Section 5, results of evaluation of the error pre-
diction methods are discussed. Evaluations are based on (i) quantitative
analysis using mean absolute error (MAE) as a measure to quantify
prediction error and (ii) visual investigation and comparison of the
reference and predicted error maps. Discussion and conclusions are
presented in Section 6.

2. Datasets used to evaluate methods for predicting per-pixel error

The performances of error prediction methods were investigated
using reference data from the United States Geological Survey (USGS)
Land-Cover Trends project (Loveland et al., 2002). Twenty-three Trends
blocks (Fig. 1) were used to provide a diverse set of examples to eval-
uate the error prediction methods. Each block represents a special case
study. The 2011 Trends reference data for each block were obtained
using manual interpretation of all pixels in the block providing a census
of reference data at a 30 m pixel size. Each pixel was assigned a single
class (hard classification) based on a modified Anderson (Anderson
et al., 1976) Level I classification scheme including the following 11
land-cover classes: water, developed/urban, mechanically disturbed,
barren, mining, forests/woodlands, grassland/shrubland, agriculture,
wetland, non-mechanically disturbed, and ice/snow (see http://
landcovertrends.usgs.gov/main/classification.html for the specific
class definitions, last accessed April 2017). Each of the 23 blocks cov-
ered a 10 km × 10 km (333 pixels × 333 pixels) area (blocks are en-
larged to enhance visualization in Fig. 1). Because the Trends reference
data represent a hard classification, a recoding and resampling process
was applied to convert these data to a soft classification for use as re-
ference data as discussed below.

To evaluate the error prediction methods it was necessary to pro-
duce land-cover soft classification maps. The land-cover classification
for each of the 23 Trends blocks was implemented by applying a
spectral unmixing method using six reflective bands (excluding
thermal) from Landsat TM images for 2011. This method required that
the number of target classes not be larger than the number of spectral
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