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A B S T R A C T

Forest resource assessments utilizing remotely sensed auxiliary data are becoming increasingly important
due to their ability to provide precise estimates of forest parameters at low cost. In presenting results from
such surveys, it is important to provide not only estimates of the target parameters, but also their confi-
dence intervals, which provide the range of values wherein the true value is located with a certain level of
confidence. If such an interval is narrow the point estimates from the survey can be considered very reliable.
In estimating the confidence interval the variance of an estimator must first be estimated. Unbiasedness, i.e.
that an estimator on average coincides with the true value, is an important property also for variance esti-
mators. Another important property is that the variance estimator itself has low variance, not least in cases
when the variance estimates obtained with the estimator may not be strictly positive. One such important
case is when two-stage designs are used to first allocate sample clusters in the form of strips from which
auxiliary data, such as metrics derived from airborne laser scanning, are obtained; field data are then derived
from sample plots beneath each sample strip in a second stage. In this article we compare two variance
estimators for such surveys. The first estimator is a standard estimator suggested in reference textbooks on
model-assisted sampling. The second estimator is proposed by the authors, and utilizes the auxiliary data
to a larger extent. Through Monte Carlo simulation we show that both variance estimators are approxi-
mately unbiased, but that the new estimator is more stable (i.e., has lower empirical variance) and provides
empirical confidence interval coverage rates that coincide more closely with the nominal coverage rates.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The demands for forest resource assessments are increasing (e.g.,
Tomppo et al., 2010). An important driver of this development is
the increased focus on renewable resources, including the substi-
tution of fossil fuels by biofuels, and the importance of forests
for preserving biodiversity. Formal commitments are expressed in
agreements such as the United Nations Framework Convention on
Climate Change, and its related protocols and mechanisms (e.g.,
IPCC, 2007).
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For a long time, surveys of forest resources in the northern
hemisphere have mainly been conducted through field invento-
ries (Tomppo et al., 2010). However, an important current trend is
that data acquired through remote sensing are utilized as auxiliary
information (e.g.,Tomppo et al., 2008; Gregoire et al., 2011). Lately,
airborne laser scanning (ALS) of strips combined with field sampling
beneath the strips has been applied in several studies (e.g.,Andersen
et al., 2011; Gobakken et al., 2012; Næsset et al., 2013a; Saarela et al.,
2015; 2016), since this type of design combined with model-assisted
estimation (Särndal et al., 1992) has been shown to be efficient com-
pared to standard field surveys (e.g., Ene et al., 2012; 2013). Several
of the surveys have focused on biomass assessment as a basis for
estimating greenhouse gas emissions.

In reporting the results from the above type of surveys, as well
as from other surveys, it is important to provide not only point
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estimates of the target parameters but also the corresponding vari-
ance estimates, since these provide a means to construct confi-
dence intervals for the target parameters. With narrow confidence
intervals, the reported point estimates can be considered trustwor-
thy in the subsequent reporting and decision making while the oppo-
site holds for wide intervals. For example, uncertainty assessments
are mandatory for greenhouse gas emissions reporting according
to the good practice guidance developed by the Intergovernmental
Panel on Climate Change (IPCC) (IPCC, 2007). However, the variance
estimator is a random variable and can produce small values (or even
negative values). Thus, we can have narrow intervals that mislead
us to think that the estimate is good while in fact the variance esti-
mator has a large variance. This is why it is important, not only that
the variance estimators are unbiased, but also that they are precise,
so that they provide trustworthy estimates of the actual uncertainty
linked to an emissions estimate.

In this study we address variance estimation in connection with
two-stage sampling designs combining, e.g., ALS and field data.
We developed a new, prediction-based, model-assisted variance
estimator and compared it with the Horvitz-Thompson (HT) model-
assisted variance estimator traditionally used in connection with
two-stage sampling designs (e.g., Särndal et al., 1992; Gregoire et
al., 2011). Specifically, we assessed the bias and variance of the tra-
ditional and the new variance estimator, as well as the empirical
coverage of confidence intervals (CIs) provided by the two variance
estimators. The studies were conducted through repeated sampling
of a simulated population. A precondition for using our variance esti-
mator is that auxiliary data are available for the first stage sampling
units (e.g., ALS strips), which is typically the case in the type of
surveys addressed.

We denote the proposed variance estimator “prediction-based,
model-assisted” since it utilizes the available auxiliary information
for improving the precision of the estimator, in contrast to the
traditional HT model-assisted variance estimator (e.g., Särndal et al.,
1992) used for this type of design.

2. Material and methods

2.1. Simulated study population resembling an area in
Northern Sweden

Two-stage sampling can be considered a special case of two-
phase sampling, where the subsampling within primary sampling
units (PSUs; clusters in the form of strips) is made independently
among clusters and invariantly of any observations made in the clus-
ters (Särndal et al., 1992). In our study the PSUs are strips, tessellated
into secondary sampling units (SSUs), grid-cells of size 17.73 m ×
17.73 m, which correspond in size to a circular field plot of 10 m
radius; along the PSU strips ALS data are collected so that ALS metrics
are obtained from each SSU grid-cell. Growing stock volume (GSV)
values are obtained from random samples of SSU grid-cells beneath
each PSU strip.

Specifically for this study we created a 314 km2 large simu-
lated population, resembling the forest conditions in the county
of Västerbotten in Northern Sweden. A multivariate copula distri-
bution (Nelsen, 2006) was employed. As reference data we used
Swedish national forest inventory (NFI) data collected from 77 circu-
lar plots of 10 m radius during summer 2009 from the Västerbotten
county. GSV values per hectare were calculated for each field plot
based on the field measurements (Fridman et al., 2014). ALS met-
rics for each NFI plot were calculated using the FUSION software
(McGaughey, 2012), based on data from a nationwide ALS survey
performed in Sweden, mainly for producing a new digital terrain
model but also for mapping forest resources. The ALS density in this
survey was about 0.5 returns m−2, the data were collected during
leaf-off period in 2009. Minimum and maximum height (hmin, hmax),

skewness and kurtosis (hskew, hkurt), and the 30th, 50th and 60th per-
centile of the height values distribution (hP30, hP50, hP60) of the first
returns point cloud were selected for the modelling of GSV based on
ALS data, using generalized linear modelling (GLM) with a log link
and the Akaike information criterion for selecting the appropriate
number of predictor variables. Only plots with non-zero values of
GSV were used. For purpose of illustration, the parameter estimates
of the model built based on the data from the 77 NFI plots, their
standard errors, corresponding p-values and the pseudo-coefficient
of determination (R2

pseudo) (McRoberts et al., 2016) are presented in
Table 1. However, note that during the Monte Carlo simulations
the model parameters were estimated each time new sample was
selected.

For simplicity in this methodological study, and to avoid any
potential difficulties in interpreting the results due to differences in
forest area among the strips, non-forest areas (mires, rock outcrop,
small lakes, and agricultural lands; all occurring sparsely in the study
area) were treated as forest and assigned values from the most simi-
lar forest plot based on Euclidean distances derived from the Landsat
spectral values.

For each NFI plot we also extracted Landsat Enhanced Thematic
Mapper Plus (ETM+) spectral values of blue, green, red, near infra-
red (IR), and two shortwave IR bands from a scene acquired on March
28, 2009 (WRS path and row 193/015), using the bilinear inter-
polation technique. Before the values were extracted, the Landsat
scene was geo-rectified to the SWEREF99–TM geographical coordi-
nate system. To assign Landsat ETM+ values to each SSU grid-cell,
the original Landsat 30 m × 30 m pixel data were resampled using
the “cubic convolution” method.

Based on the reference dataset a population of 5 million
hypothetical grid-cells was generated employing the canonical
vine (C-vine) copulas modelled with the packages “VineCopula”
(Schepsmeier et al., 2015) and “CDVine” (Brechmann and
Schepsmeier, 2013) for the statistical software R (R Core Team,
2015). Q-Q graphs comparing quantiles of (marginal) reference data
distributions with quantiles of (marginal) simulated distributions for
GSV and ALS variables are presented in Fig. 1. Put simply, we used
the copula technique to simulate a large dataset from our smaller
empirical reference dataset, so that the multivariate distribution of
the simulated data corresponds to the multivariate distribution of
the empirical reference data (Nelsen, 2006). Each actual grid-cell in
the study area was populated with GSV, ALS metrics, and Landsat
data from the 5 million observations using nearest neighbour impu-
tation, with Euclidian distances based on the Landsat spectral values
as a link. We divided the study area into 80 strip (PSUs), each
containing 12 500 grid-cells (SSUs). Thus, the study region was rect-
angular with a length of 2000 grid-cells and a width of 500 grid-cells
(Fig. 2), i.e. an area of 314 km2.

In addition to the simulated forest population we performed
a simple but more generic study where one million population
units were simulated and divided into 80 clusters (PSUs). In this

Table 1
Estimated model parameters, their standard errors (SE) and p-values, and the R2

pseudo .
The dependent variable is the natural logarithm of GSV. The model was built using
data from 77 NFI plots.

Variable Estimated model parameter SE p-value

Intercept 3.49 0.23 0.00
hmin 0.29 0.06 6.11 × 10−06

hmax 0.18 0.04 1.31 × 10−04

hskew −1.01 0.29 7.72 × 10−4

hkurt −0.1 0.04 3.02 × 10−2

hP30 −0.15 0.05 9.08 × 10−3

hP50 0.49 0.16 3.14 × 10−3

hP60 −0.52 0.17 3.10 × 10−3

R2
pseudo = 0.75
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