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A B S T R A C T

Remote sensing observations are extensively used for analysis of environmental variables. These variables
often exhibit spatial correlation, which has to be accounted for in the calibration models used in predictions,
either by direct modelling of the dependencies or by allowing for spatially correlated stochastic effects.
Another feature in many remote sensing instruments is that the derived predictor variables are highly corre-
lated, which can lead to unnecessary model over-training and at worst, singularities in the estimates. Both of
these affect the prediction accuracy, especially when the training set for model calibration is small. To over-
come these modelling challenges, we present a general model calibration procedure for remotely sensed
data and apply it to airborne laser scanning data for forest inventory. We use a linear regression model that
accounts for multicollinearity in the predictors by principal components and Bayesian regularization. It has
a spatial random effect component for the spatial correlations that are not explained by a simple linear
model. An efficient Markov chain Monte Carlo sampling scheme is used to account for the uncertainty in all
the model parameters. We tested the proposed model against several alternatives and it outperformed the
other linear calibration models, especially when there were spatial effects, multicollinearity and the training
set size was small.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Remotely sensed data, e.g. from satellites, digital aerial images, or
airborne laser scanning, are increasingly used for mapping ecological
variables over large geographical areas. Typical examples of such
use are habitat and biodiversity monitoring (McDermid et al., 2009;
Nagendra et al., 2013), lake water quality (Matthews et al., 2010)
and forest inventory (Masek et al., 2015). Remotely sensed observa-
tions provide only indirect information of the area and modelling is
needed for the interpretation of the data in terms of the variables of
interest. In forest inventory, these variables include forest character-
istics such as average forest biomass, median tree height, per hectare
stem number or average timber volume, see e.g. Næsset (1997),
Means et al. (1999), Rooker Jensen et al. (2006), and Magnussen
et al. (2010). In some cases, direct physical models might be avail-
able (e.g. based on emission and scattering of light), but generally
a simpler black-box type model to translate the remotely sensed
data to the ecological variables is needed, e.g. linear regression (see
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the references above) or other methods (see e.g. Powell et al., 2010;
Gleason and Im, 2012; Belgiu and Drăguţ, 2016). In forest inventory,
this is typically done by linear regression.

A benefit of remotely sensed observations is that they can cover
the whole spatial area of interest and the geographically located eco-
logical variable can be predicted over the whole area in a pixel or
some other sub-area level. To calibrate the model for prediction, i.e.,
to estimate the model parameters, remotely sensed data need to be
accompanied by a set of field measurements of the ecological vari-
ables at chosen test locations. For instance, in area based prediction
of forest inventory variables, the field measurements can be given
as per hectare values estimated in circular field sample plots with a
given radius. In forest inventory models, the number of field sample
plots needed for accurate calibration can be several hundreds for an
area between 10,000 and 100,000 hectares (Maltamo et al., 2011).
The design of the field measurement locations has to account for not
only the obvious statistical properties, but also the landscape prop-
erties such as mountainous terrain or thick forest, and it may be
laborious and costly to reach these locations for the measurement
work. Thus, to decrease the cost of the predictions, it is preferable
to keep the number of field measurements to a minimum. This
ambition for a small training set causes additional challenges to the
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model parameter estimation process since the regression problem
may become under-determined and easily suffer from the effects of
over-training (Junttila et al., 2013).

LiDAR (Light Detection and Ranging) is an active remote sensing
system based on laser light. In airborne LiDAR, a sensor in an aero-
plane or a helicopter sends laser pulses towards the ground and
records the time lapses between the launch of the beams and the
return of the signals. In area based models, the LiDAR predictor vari-
ables are usually some statistical aggregates of the actual LiDAR pulse
measurements over the geographical sub-areas. These variables are
typically highly correlated and this multicollinearity can cause sin-
gularities in the model. If the number of LiDAR predictor variables is
large compared to number of field sample plots, the multicollinearity
can also cause unnecessary model over-training because, in some
sense, the highly correlated predictor variables contain the same
information about the response and thus add no new information,
only redundant variables. A general approach to overcome problems
caused by multicollinearity is to use variable selection algorithms
or principal component regression. In a recent study, Junttila et al.
(2015) achieved good results with a small training set and highly
correlated multidimensional data by utilizing singular value decom-
position combined with Bayesian regularization.

Many ecological variables are spatially correlated, which means
that experimental units geographically close to each other are likely
to be more similar than those far away. If the model explains this
variability well, the model based predictions follow the same cor-
relation. However, any lack-of-fit, which is inevitable in most linear
calibration models, may produce spatially correlated model residu-
als, i.e., residuals geographically close to each other are more similar
than those far away by residual sign and amplitude. In such occa-
sions, the model performance is improved if the predictions are
corrected toward those field measurements close to the prediction
location.

In this paper, we build a linear model for prediction of the ecolog-
ical variable of interest with a small number of field measurements
which is both efficient and robust against modelling assumptions.
We use a Bayesian approach that allows us to implement effective
estimation of complex, hierarchically structured parameter associ-
ations appropriate for accommodating the strong multicollinearity
typical in remotely sensed predictors and spatial autocorrelation
among the model residuals. The method is applicable for many prob-
lems where strongly correlated data are translated to spatial obser-
vations with a linear model. In the proposed model, the problems
caused by the multicollinearity of the predictors and by the small
number of field measurements are overcome by using predictor
orthonormalization and regularization. We utilize Bayesian regular-
ization to emphasize those linear combinations of principal compo-
nent predictors that explain most of the variability of the original
predictor variables and that have predictive information on the eco-
logical variable of interest. A general spatial dependency is allowed
for the residuals of the model by a spatial random effect. The hier-
archical model is estimated and uncertainty in the spatial model
parameters is carried through to the predictions by using an efficient
adaptive Metropolis Markov chain Monte Carlo (MCMC) algorithm.

We validate model performance by using both synthetic data
with different noise levels and spatial correlation, and with real-
world observations for forest inventory. In both cases, we assume a
given design for the field plot locations and show how the spatial cor-
relation structure and a full Bayesian treatment of model parameter
uncertainties improve the model based predictions.

This work is based on earlier studies by Junttila et al. (2013), who
used a similar spatial model, but with plug-in estimates of the spa-
tial parameters instead of MCMC, and studies by Junttila et al. (2015),
who used combination of singular value decomposition and regular-
ization for regression parameters, but solved them with maximum
likelihood estimation instead of MCMC. The parametric uncertainties

of the two earlier papers are now dealt with using a sampling
based approach. We show, by comparing the predictive power, that
the approach chosen here outperforms the earlier methods in the
presence of spatial correlation in the model error.

The article is organized as follows: we first define the proposed
model in Section 2; the used datasets, both synthetic and real, are
described and the validation procedure is explained in Section 3;
the results of the validation are given in Section 4; and finally
conclusions based on the results are given in Section 5.

2. Statistical methods

2.1. The proposed model

In this study, we use a linear regression model with a spatial
random effect and hierarchical shrinkage prior for the regression
parameters. The model combines the spatial modelling and singular
value decomposition regularization described in Junttila et al. (2013)
and Junttila et al. (2015). Instead of maximum a posteriori (MAP)
estimates, the model parameters are estimated using Markov chain
Monte Carlo (MCMC) simulation. With MCMC we can implement
a hierarchical Bayesian model that can handle complex structured
parameter associations and fully account for the uncertainty in all the
model parameters for the model based predictions of the ecological
variables of interest outside the training set.

We write our model as

y = Xb + g + 4, g ∼ N(0, C), 4 ∼ N(0, t2I), (1)

where the response y is a vector of the ecological variable of interest
containing n observations, X is an n × (p + 1) matrix that includes
an intercept column and p columns of principal components of the
remotely sensed data based variables, as described in Section 2.3, b is
a p+1 vector of regression parameters, g is an n vector for the spatial
random effect, and 4 is an n vector for non-spatial error. Both the ran-
dom terms, g and 4, are assumed Gaussian. A full covariance matrix
C defines the spatial correlation structure of the model residuals
by using distances between the field measurement locations. The
errors in 4 are assumed independent and identically distributed with
variance t2.

Data at n locations containing the field measurements of the
ecological variable are referred as the training set, while the loca-
tions where the variable needs to be predicted, are referred as the
validation set. The predictors and the geographical coordinates are
assumed to be known in each training set and validation set location.

To estimate the model parameters, we use hierarchical formula-
tion to define the priors. To obtain the predictor regularization effect
using the priors, we follow the formulation of Tipping (2001). For
the regression parameter bi, i = 0, 1, 2, . . . , p, the prior is zero mean
Gaussian with inverse of variance ai. The variance parameters ai are
assumed to be unknown and they are estimated too. The prior for ai

is defined by using a scaled w2 distribution and we have

bi ∼ N(0,a−1
i ), i = 0, 1, . . . , p, (2)

ai ∼ w2(mi, ai), i = 0, 1, . . . , p. (3)

The scaled w2 distribution is common in Bayesian analyses and
can be defined by the standard Gamma distribution as w2(m, a) =
C(m/2, am/2) (see, e.g. Gelman et al., 2003). The scaled w2 parameteri-
zation is convenient in applications. We can interpret it as if knowing
the value of a to be a from m (virtual) previous observations. In addi-
tion, it is the conjugate distribution for the inverse variance, which
allows for the Gibbs sampling approach outlined below.
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