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Data continuity for the Landsat program relies on accurate cross-calibration among sensors. The Landsat 8 Oper-
ational Land Imager (OLI) has been shown to exhibit superior performance to the sensors on Landsats 4–7 with
respect to radiometric calibration, signal to noise, and geolocation. However, improvements to the positioning of
the spectral response functions on the OLI have resulted in known biases for commonly used spectral indices be-
cause the newband responses integrate absorption features differently fromprevious Landsat sensors. The objec-
tive of this analysis is to quantify the impact of these changes on linear spectral mixturemodels that use imagery
collected by different Landsat sensors. The 2013 underflight of Landsat 7 and Landsat 8 provides an opportunity
to cross calibrate the spectral mixing spaces of the ETM+ and OLI sensors using near-simultaneous acquisitions
of radiancemeasurements from awide variety of land cover typesworldwide.Weuse 80,910,343 pairs ofOLI and
ETM+ spectra to characterize the Landsat 8 OLI spectral mixing space and perform a cross-calibration with
Landsat 7 ETM+. This new global collection of Landsat spectra spans a greater spectral diversity than those
used in prior studies and the resulting Substrate, Vegetation, and Dark (SVD) spectral endmembers (EMs) sup-
plant prior global Landsat EMs. We find only minor (−0.01 b μ b 0.01) differences between SVD fractions for
coregistered pairs of spectra unmixed using the new sensor-specific endmembers identified in this analysis.
Root mean square (RMS) misfit fractions are also shown to be small (b98% of pixels with b5% RMS), in accord
with previous studies using standardized global endmembers. Finally, vegetation is used as an example to illus-
trate the empirical and theoretical relationship between commonly used spectral indices and subpixel fractions.
We include the new global ETM+ and OLI EMs as Supplementary Materials. SVD fractions unmixed using global
EMs thus provide easily computable, linearly scalable, physically based measures of subpixel land cover area
which can be compared accurately across the entire Landsat 4–8 archive without introducing any additional
cross-sensor corrections.

© 2017 Published by Elsevier Inc.

Keywords:
Landsat
Cross-calibration
Spectral mixing
Global

1. Introduction

The Landsat program provides the longest continuous record of sat-
ellite imaging of the Earth available to the scientific community
(Wulder et al., 2016). One great strength of this record lies in data con-
tinuity provided by the generally excellent cross-calibration between
the sensors on board the different satellites (Markham and Helder,
2012). To extend this continuity into the future, the Operational Land
Imager (OLI) onboard Landsat 8 must be intercalibrated with the rest
of the archive. Over the 3+ years since launch, the OLI has been
shown to exhibit superior performance to previous Landsat sensors
with respect to radiometric calibration (Mishra et al., 2016; Morfitt et
al., 2015), signal to noise (Knight and Kvaran, 2014; Morfitt et al.,
2015; Schott et al., 2016), and geolocation (Storey et al., 2014).

One of the applications enabled by such a deep archive of high quality
Earth observation data is multitemporal analysis to study long-baseline

changes (Vogelmann et al., 2016). However, concern has recently
emerged over the direct intermixing of data collected by both the OLI
and older TM/ETM+ instruments onboard Landsats 4–7 because of the
changes in band placement introduced with Landsat 8 (Holden and
Woodcock, 2016). Statistical corrections and corresponding transfer func-
tions have been introduced to correct for these differences (Roy et al.,
2016). Considerable work has been done to examine the effect of these
discrepancies and corrections in the context of spectral indices. The impli-
cations of these changes for spectral mixture analysis (SMA) are different
than for spectral indices. The implications for multi-sensor and multi-
temporal SMA have been investigated on the regional scale by (Flood,
2014), but, to our knowledge, no attempt has been made to address
these implications for globally standardized spectral mixture models.

The purpose of this study is to characterize the global Landsat 8 OLI
spectral mixing space and cross-calibrate it with the Landsat 4–7 TM/
ETM+ spectral mixing space. Previous work has shown the TM and
ETM+ sensors to provide globally consistent results for Substrate, Veg-
etation, and Dark (SVD) subpixel fraction estimates using SMA (Small,
2004; Small and Milesi, 2013). Extending this cross-calibration to
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include imagery from the OLI onboard Landsat 8 could thus extend this
consistency across the entire 30+ year archive of Landsat 4–8 imagery.
In order to develop a cross calibration suitable formulti-sensor SMA, it is
necessary to compare spectral mixing spaces for both sensors and iden-
tify comparable spectral endmembers that span both spaces. Under
ideal circumstances, this would require spectrally diverse collections
of TM/ETM+ and OLI spectra where both sensors image the same tar-
gets simultaneously.

Before Landsat 8was placed into itsfinal orbit, itwasmaneuvered into
underflight configuration below Landsat 7 for one day: March 30 (Julian
Day 89) 2013. While the two satellites were positioned in this way, they
imaged a diversity of land cover spanning a wide range of spectral reflec-
tance signatures. Each pair of ETM+/OLI images was collected approxi-
mately 2–5 min apart. The short temporal baseline between image pairs
minimizes changes in solar illumination, surface processes and atmo-
spheric effects. The underflight imagery thus provides a rare, nearly
ideal opportunity for cross-calibration of the OLI and ETM+ sensors.

However, while the underflight dataset is nearly ideal for this purpose
inmanyways, there are some caveats. Standard LaSRC surface reflectance
is not available for the OLI underflight data, so this analysis is limited to
exoatmospheric reflectance with no atmospheric correction attempted.
Furthermore, this analysis is both retrospective and global in extent, lim-
iting the results of this study to that of an intercomparison and cross-cal-
ibration, but not a full field validation. We suggest that the unique, near-
synchronous imaging geometry of the underflight data provides valuable
information that is worth exploring despite these limitations.

In this study, we use 80,910,343 unsaturated broadband spectra im-
aged nearly simultaneously by Landsat 7 and Landsat 8 while flown in
underflight configuration to address the following question: How reli-
ably can subpixel Substrate, Vegetation and Dark (SVD) fractions be
used interchangeably between ETM+ and OLI?

We find that the subscenes chosen for this analysis span an even
greater range of the Landsat spectral mixing space than previous (Small,
2004; Small and Milesi, 2013) studies. We suggest that endmembers
(EMs) generated for this study can thus effectively replace previous global
EMs.While the newDark (D) EMdoes not differ substantially fromprevi-
ous EMs, small differences in theVegetation (V) EMand larger differences
in the Substrate (S) EM are apparent. The overall behavior of themodel is
consistent with the findings of (Flood, 2014). The differences in the Veg-
etation EM are consistent with the findings of (Holden and Woodcock,
2016; Roy et al., 2016) as being a result of band placement. The differ-
ences in the Substrate EM are likely due to the wider range of global sub-
strates present in this study than in any previous global study and
constitute an improvement upon previous global models.

As a result, we find that subpixel estimates of SVD fractions for
Landsat 8 using the old and new EMs display strong linear relations,
with estimates of subpixel V fraction essentially unchanged and with
easily correctible biases for S and D. When compared with the new
EMs, all three SVD fractions scale linearly between the sensors with
minimal (μ = −0.01 to 0.01) bias. Root-mean-square (RMS) misfit to
the SVD model for both the old and the new EMs is generally small,
with N98% of all pixels showing b5% error.

Finally, we use vegetation as an example to show the relationship
between commonly used spectral indices and subpixel EM fractions
produced by SMA of Landsat 8. We suggest that fractions estimated by
SMA fromglobal EMsprovide easily computable, linearly scalable, phys-
ically basedmeasures of subpixel land coverwhich can be compared ac-
curately across the entire Landsat 4–8 archive without introducing any
additional cross-sensor corrections.

2. Background

a. Implications of spectral band positioning

The spectral response function of a sensor quantitatively defines its
sensitivity to different wavelengths of light. The radiometric design of

the Landsat 8 OLI featured an improvement on the previous TM/
ETM+ sensors by modifying its spectral response function to narrow
and slightly relocate several of the spectral bands. This has the effect
of reducing the impact of common atmospheric absorptions which im-
pede imaging the land surface (Mishra et al., 2016). However, it also has
the effect of subtly changing the broadband spectrum imaged by OLI for
any object which is not spectrally flat over the wavelengths for which
the spectral response function was modified.

Fig. 1 shows the effect of the different spectral responses of the OLI
and ETM+ sensors. Four sample green vegetation spectra (column 1)
are shown, as well as four sample mineral spectra (column 3) from
the USGS spectral library. The response functions of the two Landsat
sensors are plotted as well to demonstrate the portions of the spectrum
over which they are sensitive. The narrowing and slight adjustment to
the position of the NIR and SWIR bands (black, cyan, and gold) are evi-
dent. Superimposed on each of these spectra are simulated Landsat 7
and 8 broadband spectra computed by convolving the reflectance spec-
tra with the response functions of the sensors as described above.

Column 2 shows the difference between the OLI and ETM+ reflec-
tances derived from the laboratory spectra. The essential shape and fun-
damental characteristics of the spectra are all very similar, but
perceptible differences in the spectra are detectible. While the differ-
ences in aggregate are generally b0.01 reflectance units (b5%), the dif-
ferences can approach 0.02 reflectance units (10%) for individual
bands in some cases.

b. Spectral mixture models and linear spectral unmixing

At the scale of the 30m Landsat pixel, most landscapes are spectrally
heterogeneous. As a result, most pixels imaged by Landsat sensors are
spectral mixtures of different materials (e.g. soils, vegetation, water,
etc)with varying amounts of subpixel shadow. The continuumof aggre-
gate radiance spectra imaged by a sensor forms a spectral mixing space
inwhich each pixel occupies a location determined by the relative abun-
dance of material reflectances imaged in the Ground Instantaneous
Field Of View (GIFOV) of the pixel. In situations where multiple scatter-
ing among subpixel targets is small compared to single scattering from
each subpixel target to the sensor, the aggregate response of the sensor
often varies in proportion to the relative abundance of the spectrally
distinct materials (Singer and McCord, 1979).

The topology of the full space of radiance (or equivalently reflec-
tance) spectra reveals the linearity of mixing and the composition of
the spectral endmembers and mixtures that bound the space of all
other observed spectralmixtures (Boardman, 1993). In the case of deca-
meter resolution sensors like those on the Landsat satellites, the combi-
nation of spatial and spectral resolution, and positioning of the spectral
bands, resolves characteristics of reflectance spectra that distinguish the
most spectrally distinct materials commonly found in landscapes. Ice,
snow, rock and soil substrates, vegetation, and water each represent a
general class of reflectance spectra that are clearly distinguishable
with broadband sensors at decameter spatial scales (Small, 2004). Of
these, the aggregate broadband reflectances of most landscapes can be
represented accurately as linear mixtures of substrate (S), vegetation
(V) and dark (D) endmembers. The dark endmember corresponds to ei-
ther absorptive, transmissive or non-illuminated surfaces and typically
represents either shadow or water. As a result, linear combinations of
these three spectral endmembers can represent the aggregate reflec-
tance of a very wide range of landscapes at meter to decameter scales
(Small and Milesi, 2013).

By identifying the SVD endmember spectra that bound the spectral
mixing space, it is possible to use these endmembers together with a
linear spectral mixture model to project the 6D feature space of the
Landsat sensors onto a simpler 3D mixing space bounded by spectrally
and functionally distinct components of a wide range of landscapes
(Adams et al., 1986). Inverting a simple three endmember linear spec-
tral mixture model using the SVD endmembers yields estimates of
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