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ABSTRACT

Airborne laser scanning (LiDAR) is used in forest inventories to quantify stand structure with three dimen-
sional point clouds. However, the structure of point clouds depends not only on stand structure, but also
on the LiDAR instrument, its settings, and the pattern of flight. The resulting variation between and within
datasets (particularly variation in pulse density and footprint size) can induce spurious variation in LiDAR
metrics such as maximum height (hpmqy) and mean height of the canopy surface model (Cpeqn ). In this study,
we first compare two LiDAR datasets acquired with different parameters, and observe that hpg and Crean
are 56 cm and 1.0 m higher, respectively, when calculated using the high-density dataset with a small foot-
print. Then, we present a model that explains the observed bias using probability theory, and allows us to
recompute the metrics as if the density of pulses were infinite and the size of the two footprints were equiv-
alent. The model is our first step in developing methods for correcting various LiDAR metrics that are used
for area-based prediction of stand structure. Such methods may be particularly useful for monitoring forest
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growth over time, given that acquisition parameters often change between inventories.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Airborne laser scanning (LiDAR) is a remote sensing technology
for characterizing the surface of the earth using a cloud of georefer-
enced points. A single point records the height at which the emitted
light was reflected back to the sensor with enough energy to gener-
ate a “spike of intensity”. During the last two decades, the adoption
of this technology has increased rapidly, along with the number
of applications, particularly in the fields of topography and forest
inventory. In the forestry sector, LiDAR has the potential to reduce
the need for intensive ground-based measurement of stand struc-
ture, making it a valuable tool for “wall-to-wall” forest inventory and
mapping (Thomas et al., 2006).

1.1. Prediction methods and their limits

The most common approach for describing forest structure is
referred to as the “area-based approach” (ABA), because the point
cloud is aggregated and summarized into LiDAR metrics that reflect
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the structure of the forest at the stand level (usually square pixels
of 400 m2) (Woods et al., 2011; White et al., 2013). This method is
dependent on plot-based inventory data, which is used for the cal-
ibration of statistical models relating LIDAR metrics to variables of
interest, such as stand height, stand wood volume, and stand above-
ground biomass (e.g. Holmgren, 2004; Ioki et al., 2009; Lim et al.,
2014; Bouvier et al., 2015).

The alternative “individual tree based approach” of delineat-
ing and measuring individual tree crowns is rapidly gaining in
importance (e.g. Pyysalo and Hyyppd, 2002; Morsdorf et al., 2004;
Reitberger et al., 2009; Kwak et al., 2010; Yao et al., 2012; Vega et al.,
2014). However, despite the decreasing costs of data acquisition and
the constant increase of computing power, the ABA remains the most
practical approach for large-scale inventories because it needs lower
point density and is therefore cheaper. For example, due to the large
landbase of the Canadian province of Quebec, the Ministry of Forests,
Wildlife and Parks (MFWPQ) has recently made the decision to run
a province-wide survey at a low to medium pulse density (~ 2 to
4 pulses/m?). This will not be sufficient for delineating individual
tree crowns in closed-crown forests, so we expect that the ABA will
remain relevant for some years to come.

However, one drawback of the ABA is that the statistical models
used cannot be generalized in every configuration. For example, when
relating two metrics X and Y to a quantity of interest Q by the equation
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Q = aX?Y”, the model is not only specific to the forest type being
sampled (Van Leeuwen and Nieuwenhuis, 2010; Coomes et al., 2017),
because ¢, 3 and y have been estimated using a local inventory, but
is also likely to be specific to the LiDAR campaign, because X and Y
could be specific to the instrument, its settings, and the pattern of
flight.

Beyond the bias potentially included in existing models, the fact
that ABA-based descriptions of forest structure cannot be gener-
alized is important because in practice this might limit the usage
of LiDAR for wide-scale or multi-temporal inventory surveys in
forestry. Datasets acquired from different flights, and often differ-
ent providers, may not be perfectly compatible. In the operational
context of the province-wide survey described above, statistical
incompatibility of datasets acquired with different device param-
eters has been observed in contiguous areas leading to a spatial
discontinuities of predictions at the exact boundary of the datasets
using a metric derived from the canopy surface model that was
expected to emulate a measure of stand height made in classical
optical imagery (Ferland-Raymond B. & Lemonde M.-0. - MFWPQ,
personal communication).

One way to avoid this issue when implementing the ABA on a
large scale is to collect inventory data for each LiDAR survey, and to
fit the statistical models separately. However, this is not ideal in the
case of two contiguous datasets that share the same forest type. Also,
such a solution implies a new ground inventory and a new calibra-
tion is necessary for each dataset, which is both time-consuming and
costly. An ideal automated approach would involve the development
of models that remain stable for any LiDAR settings and could there-
fore be applied to various datasets sampled at different times and by
different providers.

One potential solution to this problem is to develop models using
metrics that remain stable when acquisition parameters change.
Such considerations are rarely presented in the literature, though
Nasset (2004) reported that the height of first returns did not vary
significantly with flight altitude or footprint diameter (footprint size
ranged between 16 and 26 cm), while last returns were more sen-
sitive to variation in footprint diameter. The most common practice
is to process a large number of candidate metrics and aim for the
highest possible goodness-of-fit by automatically selecting the best
combination of usually 3 or 4 of them (for model parsimony) to
predict a variable of interest. This approach generally includes lit-
tle consideration for metric stability. Moreover, the intrinsic nature
of LiDAR point clouds implies that there are endless possibilities to
develop new variants of each metric, a fact that limits the possibility
to make general assessments of their robustness.

A second solution is to examine the effect that acquisition param-
eters have on the structure of the point cloud, and hence on metrics
and model predictions. This option has received more attention in
the literature, particularly the influence of pulse density on model
predictions (e.g. Lovell et al., 2005; Anderson et al., 2006; Thomas
et al., 2006; Gobakken and Naesset, 2008; Lim et al., 2008; Pirotti and
Tarolli, 2010; Jakubowski et al., 2013). Most of these studies reached
the conclusion that pulse density has little or no effect on predictions
because many statistical metrics remain stable when pulse density is
artificially reduced (by definition of what a statistic is). Some studies
concluded that pulse density affects the accuracy of the predic-
tions without necessarily introducing bias (Magnusson et al., 2007;
Magnussen et al., 2010; Ruiz et al., 2014). However, metrics such as
maximum height and its derivations are not stable because they are
not statistics. Models that rely on unstable metrics can yield biased
predictions at low pulse densities (e.g. Nilsson, 1996; Nasset, 1997;
Evans et al., 2001; Sadeghi et al., 2015) especially for multi-temporal
or multi-provider datasets.

Prior studies generally use an empirical (data-driven) approach to
test if acquisition parameters have a measurable effect on particular
metrics. However, hypothesis-driven efforts dedicated to correcting

the bias that such effects may cause have mainly been restricted to
the normalization of signal intensity (e.g. Hofle and Pfeifer, 2007;
Kukko et al., 2008). This approach can also be used to recompute
LiDAR metrics as if they were obtained from an idealize “standard
device”. Such a standardization method should yield the same met-
rics that would be obtained with an infinite pulse density, a null
footprint size and a constant scan angle at nadir as it has been
achieved for signal intensity.

1.2. The specific case of maximum height (hy,qx) and derived metrics

In this paper we focus on the metric hpnq expressed in two differ-
ent ways. We derive a mathematical model for understanding how
bias in hy,q varies as a function of pulse density, forest structure, and
the scale at which it is computed (the window size). We also examine
effect of the footprint size, and a derived metric called Cpegn, Which
allows us to further examine the issue of scale dependency.

We examine two sources of variation in pulse density: variation
between datasets and variation within datasets. Variation between
datasets is mainly attributable to fixed differences in device and
flight parameters. Finer scale variation within a single dataset is due
to overlaps between flightlines (twice as many pulses per square
meter on average), and variation in aircraft speed and attitude
(mainly pitch adjustments), which are rarely discussed in the lit-
erature. Aircraft pitch adjustments are unavoidable because of the
need to maintain the specified altitude. Direction and speed correc-
tions are also common and may result in local variations in pulse
density. The local pulse density variations that result from pitch cor-
rections create a clear geometric pattern perpendicular to the flight
direction (Fig. 1). Gatziolis and Andersen (2008) presented a similar
pattern and highlighted the fact that its effects on predictions remain
unknown.

2. Methods
2.1. Study area

The study area is located within the Haliburton Forest and
Wildlife Reserve (Fig. 2). The forest is a 32, 000 ha privately owned

Fig. 1. Heat map of the variation in pulse density across a 4 km? area. Dark blue:
low density; light blue and green: intermediate density; yellow and red: high density.
Variation is due to overlap between adjacent flight lines (running from left to right)
and aircraft pitch corrections, which cause the perpendicular stripes (running from
top to bottom). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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