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A B S T R A C T

Monitoring surface soil moisture (SSM) variability is essential for understanding hydrological processes,
vegetation growth, and interactions between land and atmosphere. Due to sparse distribution of in-situ
soil moisture networks, over the last two decades, several active and passive radar satellite missions have
been launched to provide information that can be used to estimate surface conditions and subsequently soil
moisture content of the upper few cm soil layers. Some recent studies reported the potential of satellite
altimeter backscatter to estimate SSM, especially in arid and semi-arid regions. They also pointed out some
difficulties of such technique including: (i) the noisy behavior of the backscatter estimations mainly caused
by surface water in the radar foot-print, (ii) the assumptions for converting altimetry backscatter to SSM,
and (iii) the need for interpolating between the tracks.
In this study, we introduce a new inversion framework to retrieve soil moisture information from
along-track altimetry measurements. First, 20Hz along-track nadir radar backscatter is estimated by post-
processing waveforms from Jason-2 (Ku- and C-Band during 2008–2014) and Envisat (Ku- and S-Band
during 2002–2008). This provides backscatter measurements every ∼300m along-track within every ∼10
days from Jason, and every ∼35days from Envisat observations. Empirical orthogonal base-functions
(EOFs) are then derived from soil moisture simulations of a hydrological model, and used as constraints
within the inversion. Finally, along-track altimetry reconstructed surface soil moisture (ARSSM) storage
is inverted by fitting these EOFs to the altimeter backscatter. The framework is tested in arid and semi-
arid Western Australia, for which a high resolution hydrological model (the Australian Water Resource
Assessment, AWRA model) is available. Our ARSSM products are also validated against Soil Moisture and
Ocean Salinity (SMOS) L3 products, for which maximum correlation coefficients of bigger than 0.8 are
found. Our results also indicate that ARSSM can validate the simulation of hydrological models at least
at seasonal time scales.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Soil moisture storage is the main driver of the outgoing hydrologi-
cal fluxes, such as evapotranspiration and (sub-)surface runoff (Katul
et al., 2012), two important components of the terrestrial water cycle.
Therefore, quantifying spatio-temporal variability of soil moisture is
essential for modeling and understanding the water cycle, including
land–atmosphere interactions, as well as for simulating present day
and future climate change, and for flood and drought prediction (see,
e.g., Rötzer et al., 2014). Nowadays, soil moisture remote sensing has
attracted growing interest to complement the sparse available in-
situ networks. The contribution of remote sensing techniques is in
particular in monitoring of the top soil layer (first few centimeters).

Starting with the C-Band (5 GHz) wind-scatterometers on-board
of the European Remote Sensing satellites ERS-1 (launched 1991)
and ERS-2 (launched 1995), it was demonstrated that the scatterom-
eter data could be applied to estimate vegetation and soil character-
istics over continental land surfaces (Mougin et al., 1995). In fact, the
backscattered signal energy is linked to the soil water content via the
dielectric constant (Ulaby et al., 1982). In 2002, the National Aero-
nautics and Space Administration (NASA) launched the Aqua satellite
mission that carried the Advanced Microwave Scanning Radiome-
ter (AMSR-E) to observe (passive-mode) brightness temperatures at
six dual polarized frequencies (Njoku et al., 2003). Lower microwave
frequencies (e.g. C- or X-Band) allow a better monitoring of the
upper few centimeters of the Earth’s surface (Njoku et al., 2003)
with reduced sensitivity to vegetation cover and surface roughness
(Draper et al., 2009). To continue the coverage provided by the ERS
missions, the Advanced Scatterometer (ASCAT) was launched in 2006
on-board a Meteorological Operational (METOP) satellite (Bartalis et
al., 2007).

The Soil Moisture and Ocean Salinity (SMOS) satellite, a dedi-
cated soil moisture monitoring mission, was launched in 2009 to
provide brightness temperature and soil moisture products on a
three-daily basis (Delwart et al., 2008; Montzka et al., 2013). Addi-
tionally, the Soil Moisture Active Passive (SMAP) mission (Entekhabi
et al., 2010), launched in early 2015, has been monitoring continental
soil moisture changes with its passive radiometer and active L-Band
scatterometer. However, the active instrument failed after six month
of operation. Table 1 provides a short summary on the individual
missions.

Dedicated satellite altimetry missions (e.g., Envisat, Topex/
Poseidon and its follow-on Jason 1, 2, and 3 ) have been originally
designed to measure sea surface height over the oceans (Shum et
al., 1995). Over land, the measured backscatter is closely related
to soil characteristics at the satellite nadir (Papa et al., 2003;
Blarel et al., 2015). Ridley et al. (1996) and Fatras et al. (2012)

found high correlation between in-situ soil moisture measurements
and altimetry backscatter from the Topex/Poseidon and Envisat
missions. Fatras et al. (2015) extended these investigations to
different land cover regions, such as desert, savanna and forests.
They compared Jason-2 backscatter with side-looking scatterome-
ters (QuickSCAT and ASCAT) over the arid regions of West Africa
and found altimetry results to be more sensitive to soil moisture
variations and considerably less to vegetation effects, due to the
nadir-looking instrument on-board of the satellite. Ka-Band mea-
surements of the Satellite with Argos and Altika (SARAL) mission
were assessed by Frappart et al. (2015) to relate the backscatter
estimates to spatio-temporal changes in surface roughness, land
cover, and soil moisture changes over West Africa. Their study indi-
cates that Ka-Band measurements are able to penetrate underneath
the canopy of tropical forests in non-inundated areas. In Table 2,
relevant studies that utilize altimetry for soil moisture studies are
summarized. We believe that altimetry missions (1) provide high
resolution along-track measurements (∼300 m) of backscatter with
(2) low sensitivity to vegetation in combination with (3) more than
two decades of continuous measurements which makes altimetry
a valuable and independent tool for measuring surface soil mois-
ture. However, due to the limited (across-track) spatial and temporal
resolution (Table 1), the range of applications for altimetry based
soil moisture monitoring might be limited and the data should be
utilized in combination with the existing dedicated soil moisture
missions.

Estimating surface soil moisture (SSM) from brightness temper-
atures as measured by dedicated soil moisture missions, or from
backscatter observations as measured by altimetry, is challenging.
Several previous studies formulated this conversion based on a lin-
ear change detection approach (Wagner et al., 1999) and applied
to SMOS observations. For example, Liu et al. (2011) combined
active (ASCAT) and passive (AMSR-E) products and rescaled them
against the simulation of the Global Land Data Assimilation System
(GLDAS, Rodell et al., 2004). In Piles et al. (2011), SMOS prod-
ucts were combined and downscaled to 1 km using high resolution
VIS/IR MODIS observations. Al-Yaari et al. (2015) applied a multiple-
linear regression approach to minimize the differences between
AMSR-E and SMOS soil moisture products. An artificial neural net-
work was used to estimate soil moisture from simulated brightness
temperatures as in Liou et al. (2001), Angiuli et al. (2008), and Chai
et al. (2010). Recently, Rodríguez-Fernández et al. (2015) applied
a neural network to identify the statistical relationship between a
reference soil moisture data set and a variety of information from
SMOS brightness temperatures, C-Band backscatter coefficients from
ASCAT and MODIS derived Normalized Difference Vegetation Index
(NDVI) data.
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