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In this study, the added utility of nonlinear rescalingmethods relative to linearmethods in the framework of cre-
ating a homogenous soil moisture time series has been explored. The performances of 31 linear and nonlinear
rescaling methods are evaluated by rescaling the Land Parameter Retrieval Model (LPRM) soil moisture datasets
to station-basedwatershed average datasets obtained over four United States Department of Agriculture (USDA)
Agricultural Research Service (ARS) watersheds. The linear methods include first-order linear regression, multi-
ple linear regression, and multivariate adaptive regression splines (MARS), whereas the nonlinear methods in-
clude cumulative distribution function matching (CDF), artificial neural networks (ANN), support vector
machines (SVM), Genetic Programming (GEN), and copula methods. MARS, GEN, SVM, ANN, and the copula
methods are also implemented to utilize lagged observations to rescale the datasets. The results of a total of 31
different methods show that the nonlinear methods improve the correlation and error statistics of the rescaled
product compared to the linear methods. In general, the method that yielded the best results using training
data improved the validation correlations, on average, by 0.063, whereas ELMAN ANN and GEN, using lagged ob-
servationsmethods, yielded correlation improvements of 0.052 and 0.048, respectively. The lagged observations
improved the correlationswhen theywere incorporated into rescaling equations in linear and nonlinear fashions,
with the nonlinear methods (particularly SVM and GEN but not ANN and copula) benefitting from these lagged
observations more than the linear methods. The overall results show that a large majority of the similarities be-
tween the LPRM andwatershed average datasets are due to linear relations; however, nonlinear relations clearly
exist, and the use of nonlinear rescaling methods clearly improves the accuracy of the rescaled product.
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1. Introduction

Soil moisture is one of the key variables inmany geophysical science
applications (e.g., those dealing with climate, hydrology, water re-
sources, or agriculture; Lawrence and Hornberger, 2007) owing to its
memory (Han et al., 2014) and role in water and energy exchange be-
tween land and the atmosphere (Koster et al., 2004). Hence, an accurate
estimation of soilmoisture is critical formany applications (Dorigo et al.,
2012). Different soil moisture time series for the same location and
same time period can be retrieved via different platforms (e.g., hydro-
logical models, in situ observations, and remote sensing). It is often de-
sirable to merge these different datasets to obtain more accurate
estimates (Anderson et al., 2012; Yilmaz et al., 2012). However, due to
the limitations of these platforms (e.g., satellites can monitor only the
top few centimeters at relatively coarse resolutions, points in in situ ob-
servations have spatial representativeness limitations, andmodels have
different parameterizations (Koster et al., 2009)), these datasets have

systematic differences in their horizontal, temporal, and/or vertical sup-
ports (Dirmeyer et al., 2004; Koster et al., 2009). As a result, soil mois-
ture values obtained from various platforms often need to be rescaled
before they can be meaningfully validated, merged, or used in different
applications (Dirmeyer et al., 2004; Reichle and Koster, 2005; Reichle et
al., 2008; Yilmaz and Crow, 2013; Yin et al., 2014; Su and Ryu, 2015).

Many different methods are proposed to handle these systematic
differences between soil moisture products, where an unscaled original
product Y is rescaled to the space of a reference product X. However, the
performances of these methods depend on many factors, including
sampling errors, the degree to which the rescalingmethods' underlying
assumptions are met, and the goal of the rescaling efforts. Examples of
such goals include minimizing the variability of the difference between
the rescaled product (Y∗) and X via a first-order linear regression
(REG1), matching the total variability of a dataset Y to an arbitrary ref-
erence dataset X (VAR), matching the cumulative distribution function
(cdf), and matching only the signal variability of Y to that of X (here,
“signal” refers to the true variability of a dataset, where the total vari-
ability is composed of true signal variability and noise variability com-
ponents) using triple collocation analysis (TCA: Hain et al., 2011;
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Miralles et al., 2011; Parinussa et al., 2011; Scipal et al., 2008; Stoffelen,
1998; Zwieback et al., 2012).

Once the rescaling method is selected for implementation in a spe-
cific application, this method can be implemented using different strat-
egies (Yilmaz et al., 2016). For example, a dataset can be rescaled by
using a single coefficient for the entire time series by using separate
rescaling coefficients for each month or separate coefficients for the
anomaly and seasonality components. Such rescaling strategies affect
the accuracy statistics of Y∗, even though, by definition, a particular
rescaling method is selected to be the optimummethod for a particular
application (here, the optimum method refers to the method that re-
sults in the best statistic of interest, among other methods). To give a
more specific example, consider the relative accuracies of X and Y or
the differences between the signal-variability-to-noise-variability ratio
(Gruber et al., 2016), for X (SNRX) and Y (SNRY). In general, the relative
variations of SNRX and SNRY are expected to impact the overall perfor-
mance of the rescaling methods through the use of various rescaling
strategies (Yilmaz et al., 2016) for many applications (e.g., the creation
of homogenous time series and data assimilation). For example, if
SNRX NN SNRY, it is better to rescale Y strongly to X (e.g., by rescaling
the seasonality and anomaly components separately using two different
rescaling coefficients or rescaling datasets for each month separately
using 12 different rescaling coefficients). By contrast, if SNRY N SNRX, it
is better toweakly rescale Y to X (e.g., by rescaling the entire time series
at once and using a single rescaling coefficient). Hence, the performance
of any rescaling method (e.g., REG1, VAR, TCA, and CDF) could vary de-
pending on the aggressiveness with which the rescaling strategy is im-
plemented (e.g., weak or strong; Yilmaz et al., 2016).

Both the rescaling method selection (Yilmaz and Crow, 2013) and
degree of aggressiveness implemented (Yilmaz et al., 2016) can impact
the optimality of the Y∗ statistics. Here, the question arises whether the
inter-comparisons of rescaling methods make sense, without taking
into consideration SNR variations. Yilmaz et al. (2016) investigated
the impact of SNR variations using only a particular rescaling method
(VAR). Hence, before making comments with high confidence, a sensi-
tivity study that comprehensively investigates the impact of SNR varia-
tions on the performances of various rescalingmethods is still required.
However, in the absence of evidence, it is viable that SNR variationswill
impact various rescalingmethods similarly, though the actual degree of
improvement via stronger/weaker rescaling strategies may depend on
the particular rescaling method. Accordingly, a universally optimum
rescaling method that fits all applications may not exist; the optimality
of a rescaling method is largely application specific, particularly if the
underlying assumptions inherent to its own methodology are not met.
Hence, studies investigating the relative performances of different
rescaling methods (both linear and nonlinear) may still contribute to
the efforts on the topic of optimal rescaling methods, even without ex-
plicitly considering SNR variations.

Satellite-based soil moisture data are often validated using station-
based watershed average data (Jackson et al., 2010, 2012), which have
considerably higher local nonlinearity, due to the soil moisture dynam-
ics (Crow andWood, 2002). The spatial support difference between sta-
tion- and remote sensing-based products (i.e., point vs areal average) is
another source that introduces nonlinear relations between different
products. In a recent study, Zwieback et al. (2016) introduced nonpara-
metric CDF and used two new parametric methods to extend TCA to in-
vestigate the impact of nonlinear relations on the error statistics
obtained via TCA. This study particularly stresses the existing quadratic
relations (e.g., the saturation of sensitivity of a product with respect to
the sensitivity of another product) between the actual signal compo-
nents of different soil moisture products, which may lead to nonlinear
relations. Zwieback et al. (2016) also provided an extensive discussion
on the existence of nonlinear relations between soil moisture products.
It is, therefore, viable that such existing nonlinear relations between
datasets may not be captured using linearmethods, and the use of non-
linear methods may be necessary. By contrast, the variety of nonlinear

methods used to rescale soil moisture datasets remains very limited,
and there is still more room to investigate the performance of such non-
linear methods.

Among the rescaling methods used in soil moisture studies, CDF
(Drusch et al., 2005; Reichle and Koster, 2004; Yin et al., 2015;
Zwieback et al., 2016) has received particular attention. Other methods,
based on VAR (Crow et al., 2005; Draper et al., 2009; Su et al., 2013),
REG1 (Brocca et al., 2013; Crow and Zhan, 2007; Crow, 2007), TCA
(Yilmaz and Crow, 2013), quadratic polynomials (Zwieback et al.,
2016), copula (Leroux et al., 2014), and Wavelets (Su and Ryu, 2015)
have also been implemented to reduce the systematic differences be-
tween soil moisture time series. However, a comprehensive intercom-
parison of the performances of these methods in a soil moisture
rescaling study has not yet been performed.

The above-listed methodologies have been explicitly used in soil
moisture rescaling studies, whereas many other methods have not.
For example, multiple linear regressions using quadratic equations
(REG2) and lagged observations (REGL) have previously been used in
a soil moisture TCA framework (Crow et al., 2015; Su et al., 2014;
Zwieback et al., 2016), but quadratic equations and lagged observations
together (REGL2) have not. Among the many machine learning meth-
odologies, ANN methods (Rochester et al., 1956) have been used to re-
trieve soil moisture via microwave measurements (Notarnicola et al.,
2008; Paloscia et al., 2008; Prigent et al., 2005; Rodriguez-Fernandez
et al., 2015) and SVM methods (Cortes and Vapnik, 1995) have been
used to predict soil moisture (Gill et al., 2006) in the root zone using
data assimilation techniques (Liu et al., 2010). Other methods that can
be used to relate the different datasets, such as the nonlinear regression
methods GEN (Koza, 1994) andMARS (Friedman, 1991), have not been
used in soil moisture-related studies. To our knowledge, none of these
methods (REG2, REGL, REGL2, MARS, GEN, SVM, and ANN) have previ-
ously been explicitly used to rescale soil moisture datasets.

The soil moisture has a high temporal memory (i.e., autocorrela-
tion), and consecutively retrieved soil moisture observations have
high dependence, implying that previously retrieved soil moisture ob-
servations could arguably be viewed as a slightly degraded version of
the current values. This property is very valuable for satellite-based
soil moisture retrievals; lagged soil moisture products could be used
as independent observations, given that past observations are quasi-in-
dependently obtained from current observations. This dependence has
been utilized by many recent studies (Crow et al., 2015; Su et al.,
2014; Zwieback et al., 2013), particularly those focusing on soil mois-
ture TCA methods, which require three independent products.
Exploiting the same information source, lagged variables are inherently
used by some ANN types in building robust relations between the input
and output layers. Although many other methods (e.g., multiple linear
regression, MARS, GEN, copula, and SVM) could also benefit from such
information in the framework of rescaling soil moisture variables,
such an effort has not been made to date.

VAR, REG1, TCA, and CDF have unique solutions and are widely im-
plemented in soil moisture rescaling studies. The optimality of linear
rescaling methods (VAR, REG1, and TCA) in the context of data assimi-
lation has been investigated both analytically and numerically by
Yilmaz and Crow (2014), and some remedies are available for these
methods when the underlying assumptions are not met (Crow and
Yilmaz, 2014; Su et al., 2014). However, because the implementations
of nonlinear rescaling methods remain limited in the context of
rescaling soil moisture time series, the performance of these nonlinear
methods, which are relative to that of linear methods, remains largely
unexplored. Therefore, there is still room to investigate the perfor-
mances of nonlinearmethods relative to those of linearmethods to bet-
ter understand the degree of existing nonlinearity in soil moisture
products, even though the degree of existing nonlinearity and degree
to which these nonlinear relations can be captured drives the actual dif-
ference between the performance of the nonlinear and linear rescaling
methodologies.
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