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Studies of land cover dynamics would benefit greatly from the generation of land covermaps at both fine spatial
and temporal resolutions. Fine spatial resolution images are usually acquired relatively infrequently, whereas
coarse spatial resolution imagesmay be acquiredwith a high repetition rate butmay not capture the spatial detail
of the land covermosaic of the region of interest. Traditional image spatial–temporal fusionmethods focus on the
blending of pixel spectra reflectance values and do not directly provide land cover maps or information on land
cover dynamics. In this research, a novel Spatial–Temporal remotely sensed Images and land cover Maps Fusion
Model (STIMFM) is proposed to produce land cover maps at both fine spatial and temporal resolutions using a
series of coarse spatial resolution images together with a few fine spatial resolution land cover maps that pre-
and post-date the series of coarse spatial resolution images. STIMFM integrates both the spatial and temporal de-
pendences of fine spatial resolution pixels and outputs a series of fine spatial–temporal resolution land cover
maps instead of reflectance images, which can be used directly for studies of land cover dynamics. Here, three
experiments based on simulated and real remotely sensed images were undertaken to evaluate the STIMFM
for studies of land cover change. These experiments included comparative assessment of methods based on sin-
gle-date image such as the super-resolution approaches (e.g., pixel swapping-based super-resolution mapping)
and the state-of-the-art spatial–temporal fusion approach that used the Enhanced Spatial and Temporal Adaptive
Reflectance FusionModel (ESTARFM) and the Flexible Spatiotemporal DAta Fusionmodel (FSDAF) to predict the
fine-resolution images, in which the maximum likelihood classifier and the automated land cover updating ap-
proach based on integrated change detection and classification method were then applied to generate the
fine-resolution land cover maps. Results show that the methods based on single-date image failed to predict
the pixels of changed and unchanged land cover with high accuracy. The land cover maps that were obtained
by classification of the reflectance images outputted from ESTARFM and FSDAF contained substantial misclassi-
fication, and the classification accuracy was lower for pixels of changed land cover than for pixels of unchanged
land cover. In addition, STIMFM predicted fine spatial–temporal resolution land cover maps from a series of
Landsat images and a few Google Earth images, to which ESTARFM and FSDAF that require correlation in reflec-
tance bands in coarse andfine images cannot be applied. Notably, STIMFMgenerated higher accuracy for pixels of
both changed and unchanged land cover in comparison with other methods.
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1. Introduction

Land cover maps are one of the most fundamental datasets used in
many scientific fields and are often produced from remotely sensed im-
ages (Bartholomé and Belward, 2005; Friedl et al., 2002). A wide variety

of remote sensing systems have been developed, and hence, images are
available with different spatial and temporal resolutions, thereby
allowing the production of land covermaps at different spatial and tem-
poral scales.Withmost satellite remote sensing systems, a trade-off typ-
ically exists between spatial and temporal resolution. In general, fine
spatial resolution remote sensors can acquire images that provide spa-
tially detailed land cover information, but their relatively coarse tempo-
ral resolution limits their usage inmonitoring rapid land cover changes.
By contrast, coarse spatial resolution remotely sensed images can often
be acquired at a fine temporal resolution that provides a repetition rate
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suitable for the detection of rapid land cover changes but are unable to
represent the spatial detail of the land cover mosaic. To realize the full
potential of remote sensing as a source of information on land cover
change, a method that allows the production of land cover maps with
both fine spatial and temporal resolutions is required. Such maps
could be obtained by combining all available remotely sensed images
of varying spatial and temporal resolution to form a series of fine-reso-
lution land cover maps.

Recently, spatial–temporal image fusion,which aims to produce fine
spatial and temporal resolution remotely sensed images from images
with different spatial and temporal resolutions, has become a promising
means to address the trade-off between spatial and temporal resolution
(Gevaert and Garcia-Haro, 2015; Zhu et al., 2016). Spatial–temporal
data fusion methods can be categorized into weighted function based
methods, unmixing-based methods, and dictionary-pair learning
based methods (Zhu et al., 2016). Among the weighted function based
methods, the Spatial and Temporal Adaptive Reflectance Fusion Model
(STARFM) proposed by Gao et al. (2006) was developed first and is
one of the most popular spatial–temporal image fusion methods. By
fusing coarse spatial resolution Moderate Resolution Imaging
Spectroradiometer (MODIS) and fine spatial resolution Landsat sensor
images, STARFM can predict Landsat-like reflectance images with the
spatial resolution of Landsat and the temporal resolution of MODIS. A
number of studies have suggested improvements to STARFM, including
studies of forest disturbance (Hilker et al., 2009a), and in heterogeneous
regions (Zhu et al., 2010), as well as in gap filling to reduce the negative
effects of cloud (Gevaert and Garcia-Haro, 2015). STARFM and the im-
proved models based on it have been mainly used to detect reflectance
changes caused by processes such as phenology over large areas, and
used to generate dense time series of Landsat-like data (Hilker et al.,
2009b), enhance land cover classification (Jia et al., 2014), and predict
key environmental variations such as evapotranspiration (Anderson et
al., 2011) and temperature (Hilker et al., 2009b). Other spatial–tempo-
ral image fusionmodels, such as the unmixing-based algorithm that ex-
tracts endmembers on the basis of linear spectral mixture model and
assigns the unmixed reflectance to fine spatial resolution pixels
(Huang and Zhang, 2014; Zhukov et al., 1999; Zurita-Milla et al.,
2009) and the dictionary-pair learning based methods, which capture
features from the coarse- and fine-resolution image pairs used for
predicting fine-resolution image (Huang and Song, 2012), have also
been proposed and applied to Landsat and MODIS images in recent
years (Amorós-López et al., 2013; Wu et al., 2012).

Generally, spatial–temporal image fusion models aim to generate a
series of continuous reflectance values instead of discrete categorical
values. A further image classification step is needed to produce from
the reflectance images a corresponding series of land cover maps for
the study of land cover class dynamics (Jia et al., 2014). The use of
these methods for generating land cover maps and monitoring land
cover changes often suffers from two important limitations.

First, most spatial–temporal image fusion algorithms assume that
land cover type does not change during the data observation period
(Fu et al., 2013; Gao et al., 2006; Zhu et al., 2010). Previous research
has shown that STARFM does not deal well with abrupt land cover
changes. Song and Huang (2013) showed that STARFM failed to fuse
the pixel reflectance accurately in a study of land cover change in an
urban area. The Enhanced STARFM (ESTARFM) is often better than
STARFM for studies of heterogeneous landscapes (Zhu et al., 2010) but
can be worse than STARFM for predicting abrupt changes of land
cover type (Emelyanova et al., 2013). The Spatial Temporal Adaptive Al-
gorithm for mapping Reflectance CHange (STAARCH) improves
STARFM's performance when land cover type change and disturbance
exist, but it is more suitable for spatial–temporal fusion of forest land
cover (Hilker et al., 2009a). The Flexible Spatiotemporal DAta Fusion
model (FSDAF) can predict Landsat-like reflectance values with both
gradual change and land cover type change, but it cannot capture tiny
changes in land cover type, such as when only a few fine pixels

experienced land cover type change and the change is invisible in the
coarse-resolution image (Zhu et al., 2016). Similar to STARFM, the
unmixing-based spatial–temporal reflectance fusion methods consider
only the change in endmember spectra but not in land cover types
(Huang and Zhang, 2014; Zhukov et al., 1999; Zurita-Milla et al., 2009).

Second, most spatial–temporal image fusion methods need one or
more observed pairs of coarse- and fine-resolution images for training
and require the coarse- and fine-resolution remotely sensed data from
different satellite sensors to be mutually comparable and correlated.
All the weighted function basedmethods, including STARFM, ESTARFM,
STAARCH, and all the dictionary-pair learning-basedmethods need one
or more observed pairs of coarse- and fine-resolution images, which
have comparable reflectance bands, for training (Gao et al., 2006;
Gevaert and Garcia-Haro, 2015; Zhu et al., 2010). Thesemethodsmainly
focus on predicting Landsat-like remotely sensed images with MODIS
repetition rates. However, these methods cannot deal with other satel-
lite images, which have uncorrelated reflectance bands, and are thus
limited in the use of land cover change analysis. For instance, in region-
al-scale land cover analysis, the detection of very-high-resolution land
cover changes at high temporal resolutions is required. In general, we
can obtain a series of Landsat images and a few very-high-resolution
images such as panchromatic aerial photograph. The weighted function
based and dictionary-pair learning based methods cannot fuse these
data because the very-high-resolution images usually have different re-
flectance bands compared with Landsat images.

The spatial–temporal image fusion methods aim to produce fine
spatial–temporal resolution reflectance images rather than land cover
maps. The fused fine-resolution images have many applications, such
as phenology analysis. If the aim is to generate a sequence of land
cover maps from the reflectance images from which land cover change
trajectories may be extracted, then a further image classification analy-
sis is still required, which may introduce uncertainty and error in the
land cover maps. First, the classification of an image series can be com-
plex and laborious. Training statistics are required to inform classifica-
tion analysis, and these may vary in quality in time due to issues such
as phenology. Moreover, the classification is also problematic, with the
potential for different classifiers to generate dissimilar land cover
maps from the same training data. Traditional classifiers applied to
mono-temporal image may also ignore the temporal information
contained in a series of images and thereby produce a classification of
sub-optimal accuracy. The spatial–temporal–based image classifier has
the advantage in taking both the spatial and temporal links between
neighboringpixels (Cai et al., 2014), but is challenging to use for volumi-
nous image series (Liu and Cai, 2012; Liu et al., 2006). Finally, the spa-
tial–temporal image fusion models generate a large volume of fine
spatial–temporal resolution reflectance images as the intermediate
data to be used for the production of land cover maps. This situation
may represent practical challenges in terms of data access and storage.

Given the concerns with the spatial–temporal reflectance fusion
model for producing land cover maps, a more appropriate fusion ap-
proach could be based on directly downscaling the coarse spatial resolu-
tion image series to fine spatial resolution land cover maps rather than
reflectance images, with the aid of information derived from a few fine
spatial resolution images that may be available. Chen et al. (2015) up-
dated land covermaps fromdownscaled NormalizedDifferenceVegeta-
tion Index (NDVI) time-series data from MODIS, a current Landsat
image, and a Landsat image that pre-dates it. The NDVI time-series
data are used as ancillary data to extract changed pixels in the Landsat
images, and the labels of changed pixels are determined using the cur-
rent Landsat image. Thus, this method can update fine-resolution land
covermapswith Landsat repetition rates based on available Landsat im-
ages, but cannot predict fine-resolution land cover maps with MODIS
repetition rates. In addition, a major problem with this approach is
that a large proportion of coarse spatial resolution image pixels may
be of mixed land cover composition. A possible solution of this problem
is to use the fractional land cover class composition images that can be
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