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This article introduces a novel methodology for automated classification of forest areas from airborne laser scan-
ning (ALS) datasets based on two direct and simple rules: L-coefficient of variation Lcv=0.5 and L-skewness
Lskew=0, thresholds based on descriptors of the mathematical properties of ALS height distributions. We ob-
served that, while LcvN0.5 may represent forests with large tree size inequality, LskewN0 can be an indicator
for areas lacking a closed dominant canopy. Lcv=0.5 discriminated forests with trees of approximately equal
sizes (even tree size classes) from those with large tree size inequality (uneven tree size classes) with kappa
κ = 0.48 and overall accuracy OA = 92.4%, while Lskew=0 segregated oligophotic and euphotic zones with
κ = 0.56 and OA = 84.6%. We showed that a supervised classification could only marginally improve some of
these accuracy results. The rule-based approach presents a simple method for detecting structural properties
key to tree competition and potential for natural regeneration. The study was carried out with low-density
datasets from the national program on ALS surveying of Finland, which shows potential for replication with
the ALS datasets typically acquired at nation-wide scales. Since the presented method was based on deductive
mathematical rules for describing distributions, it stands out from inductive supervised and unsupervised classi-
fication methods which are more commonly used in remote sensing. Therefore, it presents an opportunity for
deducing physical relations which could partly eliminate the need for supporting ALS applications with field
plot data for training and modelling, at least in Boreal forest ecosystems.
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1. Introduction

Airborne laser scanning (ALS) can be a valuable tool for studying
structural properties of forests (Lefsky et al., 1999a; Drake et al., 2002;
Frazer et al., 2005;Maltamo et al., 2005; Valbuena et al., 2016a). The re-
lationships of ALS to forest structure can be employed to analyse asym-
metric competition among trees (Kellner and Asner, 2009), and hence
forest growth conditions (Stark et al., 2012). In fully-stocked forests
(Gove, 2004) light resource pre-emption drives asymmetric competi-
tion processes, leading to mortality of the least competitive trees
(Weiner, 1990). These are forests with closed canopies and structural
properties yielding shady areas, i.e. oligophotic zones (sensu Lefsky et
al., 2002), under the dominant tree crowns. In turn, detecting forest
areas with light resource availability, which are characterized by large
euphotic zones (sensu Lefsky et al., 2002), can be key tomonitoring for-
est disturbance and regeneration. Several metrics derived from ALS
height distributions have potential for describing these key characteris-
tics related to forest structure (Zimble et al., 2003). For this reason,

studies on ALS-based forest structure characterization by statistical in-
ductive methods, which relate ALS metrics to field attributes empirical-
ly, are commonplace (Hall et al., 2005; Lefsky et al., 2005; Dalponte et
al., 2008; Pascual et al., 2008; Disney et al., 2010; Jaskierniak et al.,
2011; Ozdemir and Donoghue, 2013; Valbuena et al., 2014).

Size hierarchy among trees growing in the vicinity influences com-
petition processes in the forest community (Weiner, 1990; Valbuena
et al., 2012). Knox et al. (1989) suggested the Gini coefficient (GC)
(Gini, 1921) as a consistent descriptor of tree size inequality, and
hence a reliable indicator of competition conditions in the forest
(Cordonnier and Kunstler, 2015). For this reason, in the context of ALS
estimation, the GC of tree sizes has been used as a basis for stratifying
the forest area into homogeneous structural types (Bollandsås and
Næsset, 2007; Valbuena et al., 2013a). Furthermore, Knox et al. (1989)
also suggested the inclusion of skewness as a complement to the GC in
describing forest structural properties. For this reason, Valbuena et al.
(2013a) included asymmetry in their analysis of forest structural prop-
erties, to study relations of relative dominance between different strata
in the forest vertical profile.

While Bollandsås and Næsset (2007) employed stand register data
from previous inventories for carrying out their stratification, it would
be advantageous if the same remote sensing material could be used
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for wall-to-wall predictions of forest structure indicators and classifica-
tions into forest structural types (Lefsky et al., 1999b;Drake et al., 2002).
In particular, Ozdemir and Donoghue (2013) and Valbuena et al.
(2013b, 2016a) obtained predictions of the GC of tree size inequality
with reliable accuracy. As previous research has concentrated on the
forest response (Lefsky et al., 1999a; Valbuena et al., 2013a), and on
its analysis and estimation by a wide range of different statistical
methods – such as analysis of variance (Zimble et al., 2003), canonical
correlation (Lefsky et al., 2005), parametric (Hall et al., 2005) and
non-parametric (Valbuena et al., 2014) modelling, histogram
thresholding (Maltamo et al., 2005), or finite mixtures (Jaskierniak et
al., 2011) –, the next question to answer would be: do the ALS metrics
have, by themselves, capacity to discriminate among forest structural
types, making no use of statistical methods linking field data to ALS
metrics?.

Moments are quantitative measurements of probability density dis-
tributions employed to summarize their properties. The most conven-
tional are the product moments, expected values of the powers of a
random variable which lead to the use of mean, variance and skewness
asmeasures for location, scale and shape. Thesedescriptors of ALS return
height distributions are metrics commonly employed as auxiliary vari-
ables in forest assessment (e.g., Næsset, 2002; White et al., 2013;
Asner and Mascaro, 2014). Alternatively, Frazer et al. (2011) and
Ozdemir and Donoghue (2013) recently drew the attention towards
the L-moments, a set of statistics known by their sample efficiency
(i.e., reliability at small sample sizes) and robustness to outliers, com-
pared to conventional moments (Hosking, 1990). Consider a sample
order statistic Xk:r – the kth smallest observation in a sample of size r –,
which is a many-to-one transformation of a random sample of size r,
and therefore a random variable. The L-moments are based on its ex-
pected values E(Xk:r) (Appendix A). Moreover, L-moment ratios have
the advantage of being bounded by finite intervals (Hosking, 1989),
making them comparable among ALS distributions differing in their
mean height. The L-coefficient of variation (Lcv) and the L-skewness
(Lskew) are two types of L-moment ratios (Appendix A.2). Lcv is the
ratio of the second (L2) to the first (L1) L-moments:

Lcv ¼ L2
L1

¼ E X2:2ð Þ−E X1:2ð Þ
2E Xð Þ ; ð1Þ

where E(X) is the expected value of X. In the case of ALSmetrics, the var-
iable X is the height of ALS returns. The Lcv is mathematically equivalent
to the GC (Appendix A.3), and therefore the same properties apply to
both of them. For instance, they are scale-invariant, and for positive ran-
dom variables their values are bounded within the [0,1] interval
(Hosking, 1989). Also, Valbuena et al. (2012) showed that an asymptote
atGC=0.5 represents the case ofmaximumentropy among tree sizes in
the forest. On the other hand, Lskew is the ratio of the third (L3) to the
second (L2) L-moments:

Lskew ¼ L3
L2

¼ E X3:3ð Þ−2E X2:3ð Þ þ E X1:3ð Þ
E X3:3ð Þ−E X1:3ð Þ : ð2Þ

In the case of Lskew, its theoretical bounds are [−1,1] (Hosking, 1989).
The value of Lskew=0 corresponds to a symmetric distribution, while
positive or negative values denote the type of asymmetry for the distri-
bution of ALS heights. This article employs these mathematical proper-
ties of L-moments for describing ALS height distributions, in contrast to
inductively researching explanatory potential in relation to field data
attributes.

The aim of this research was to develop simple methods for
explaining key features related to forest structure from a few L-moment
ratios of ALS returns. Lcv and Lskewwere used for detecting tree size in-
equality and light availability, and they were utilized for an automated
classification of forests from ALS datasets, which was applied directly
without the use of field data. The idea builds upon the hypothesis that

two deductive mathematical rules, Lcv=0.5 and Lskew=0, may be
used to classify the forest area into two groups, based solely on the
ALS height distributions. We studied whether such classifications
would be sound in terms of explaining properties of size inequality
among trees growing in vicinity (even or uneven tree sizes) and com-
petitive conditions for light in the forest community (oligophotic or eu-
photic).We compared the reliability of the rule-basedmethod to results
obtained from a supervised classification. This article discusses suitable
applications for this rule-based method.

2. Materials

2.1. Study area and ALS data

The researchwas conducted in a 252,000 ha study area including ap-
proximately 200,000 ha of the Boreal forest ecosystems typically found
in the region of North Karelia (Finland), which consists of forests dom-
inated by Scots pine (Pinus sylvestris L.) Norway spruce (Picea abies (L.)
Karst.) or Birch species (Betula ssp.) with various degrees of admixtures
also with other deciduous trees (such as Alnus ssp., Populus ssp. etc.).
The ALS data were acquired by Blom Kartta Oy (Finland) during May
2012with anALS60 system from LeicaGeosystems (Switzerland). A fly-
ing height of 2300 m above ground rendered an average density of 0.91
pulses per squared-meter. Country-wide laser data are being consis-
tently acquired using broadly similar parameters (National Land
Survey of Finland; NLS, 2013). Methods may therefore by consistently
replicated throughout the country, bringing potential for upscaling the
results obtained at national-level.

Heights above ground for individual ALS returns were calculated by
subtracting the digital terrain model provided by the NLS. We consid-
ered that, as seedlings and saplings were included in field mensuration
(Valbuena et al., 2016b), their influence in laser pulse interception had
to be accounted for in ALS metric computation. Consequently, just a
very small height threshold of 0.1 m was used, only with the intention
to mask out the influence of the ground. Sample estimates of L-mo-
ments and their ratios (Wang, 1996) were computed from the heights
of all the ALS returns located within each cell over a regular grid cover-
ing the entire study area. The spatial resolution of this grid was 16 m ×
16m, a customary practice in Finland that makes cell size roughly coin-
cident in with the area of field plots operationally established andmea-
sured by Finnish Forest Centre (SMK, Suomen Metsäkeskus).

2.2. Field dataset used for validation

Field data for validation of themethodswere partly acquired by Uni-
versity of Eastern Finland (UEF), and partly provided by SMK. Data from
a total of N=244 plots were acquired in a stratified random sampling
fashion with approximately equal per-stratum sample sizes (Valbuena
et al., 2016b). The strata employedwere the forest development classes
commonly used in operational management in Finland (per-stratum
sample sizes were n=31, unless specified): Seedling, Sapling, Young,
Advanced, Mature, Shelterwood, Seed-tree (n=29), and Multi-storied
(n=29). SMK's stand register data based on previous inventories was
employed for the initial randomization of field plot locations.
Valbuena et al. (2016b) provides details about acquisition protocol
and processing of field data. Appendix B details the criteria used to as-
sign a development class to each field plot, a task carried out indepen-
dently by experienced SMK personnel.

3. Methods

3.1. The rule-based method for stratifying forests based on ALS data

We used a deductive approach to thresholding using the L-moment
ratios. The rules were deduced from their mathematical properties, as
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