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Phenology is a key indicator of vegetation response to global change. Satellite observations from coarse resolution
sensors (i.e., MODIS and AVHRR) have been widely used to study impacts of climate anomalies on vegetation
phenology. The advantage of coarse resolution sensors are daily observations across the entire globe, but the
coarse spatial resolution, as well as the relatively short time span covered by MODIS, are significant drawbacks
in analyzing landscape-scale trends in phenology. Time series data from the medium resolution sensor Landsat
may overcome these issues. However, because of Landsat's lower observation frequency, phenological methods
developed with coarse resolution data are not directly transferable. Here, we demonstrate a new Bayesian hier-
archical modeling framework for estimating inter-annual variation in vegetation phenology from Landsat time
series while controlling for spatial variation. The method pools all available observations to estimate the spatial
variation in phenological parameters, while specifically modeling inter-annual variation as random effect
terms. The advantage of a Bayesian approach is the ability to incorporate prior knowledge from other phenology
and climate observations to reduce variability in the estimates, aswell as amore robust estimation of uncertainty.
Wedemonstrate and evaluate themodeling frameworkwith a case study of changing spring phenology in broad-
leaved trees in the Bavarian Forest National Park in southern Germany. Results show that the model estimated
the spatial and temporal variation in phenological parameters precisely. Temporal variation in start of season
showed overall strong agreement with ground-based measures of bud-break variability (r = 0.82 [0.80–0.84]).
Our proposedmodeling frameworkwill help to bettermonitor and understand changes in vegetation phenology
at scales yet unexplored by the phenological community.
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1. Introduction

Vegetation phenology describes the study of the timing of recurring
plant life cycles and their connection to climate (Forrest and Miller-
Rushing, 2010). Monitoring vegetation phenology is of great importance
for the study, reporting, and management of global change impacts on
vegetation (Skidmore et al., 2015). Vegetation phenology can be
monitored in-situ (Chmielewski et al., 2013) and by earth observation
(Fitchett et al., 2015).While the former allows for detailedmeasurements
of biological events on single plants (Menzel et al., 2006), the latter
enables a globally consistent and holistic view on the phenology of entire
plant communities (Tang et al., 2016).

Phenological studies that utilize earth observation data commonly
make use of coarse spatial resolution sensors such as the MODerate
Resolution Imaging Spectroradiometer (MODIS; Keenan et al., 2014)

and the Advanced Very-High Resolution Radiometer (AVHRR; White
et al., 2009). MODIS and AVHRR provide daily observations of the
Earth's surface, which allows for fitting phenological models to each
year's time series to estimate annual phenological parameters
(Jonsson and Eklundh, 2002). While MODIS and AVHRR have been the
sensors most often used in remote sensing based phenological analysis,
they have important drawbacks. First, they lack the spatial detail neces-
sary for studying vegetation phenology in heterogeneous landscapes
(Fisher et al., 2006). Second, since MODIS data are only available from
2000 on, the time period for studying trends in phenology is rather
short to be able to detect patterns related to global climate change
(Hamunyela et al., 2013). Third, estimating annual phenological param-
eters from MODIS or AVHRR assumes that each year's phenological
parameters are sampled from an independent model, with different
variances between years (i.e., an un-pooled model). By risking over-
fitting the data within each year, an un-pooled model might lead to
wrong conclusions about trends underlying inter-annual variation in
phenological parameters (White et al., 2014; White et al., 2009). To
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improve upon these drawbacks in phenological modeling, Landsat's
long-term data record of fine-resolution observations holds a unique
potential that is still not fully explored.

With the opening of the United States Geological Survey (USGS)
archive in 2008 (Wulder et al., 2012), Landsat time series have become
a new potential data source for monitoring vegetation phenology
(Fisher et al., 2006). The Landsat sensor family spans N30 years of contin-
uous earth observation data at a spatial resolution of 30m and a potential
8-day repeat cycle in periods where different Landsat sensors overlap
(Roy et al., 2014). However, in practice the data availability is much
lower, becausemost regions outside the United States have not been con-
tinuously imaged, due to archive restrictions, cloud cover, and Landsat 7's
failed Scan-Line Corrector in 2003 (Ju and Roy, 2008;Wulder et al., 2016).
As a consequence, Landsat's cloud-free observation frequency ranges
frombi-weekly to bi-monthly or even less observations per year, hamper-
ing the analysis of trends in phenological parameters using un-pooled
phenological models (Coops et al., 2012). One solution to this problem
is to pool all data into onemodel to estimate average phenological param-
eters independent of the year of observation (Fisher et al., 2006). Pooled
models assume that all observations are sampled from one underlying
model with equal variance. To quantify the inter-annual variations in
model parameters, studies have used the annual deviations between
the observations and the pooled model averaged over all pixels (Melaas
et al., 2013). Unfortunately, this approach is strongly dependent on data
availability, leading to imprecise estimates of inter-annual variability in
phenological parameters that likely obscure the true underlying pheno-
logical trend (Nijland et al., 2016).

Building on the research by Melaas et al. (2013), we here demon-
strate a Bayesian partially-pooled hierarchicalmodel for estimating spa-
tial and temporal variations in phenological parameters from Landsat
time series. A key advantage of a partially-pooled hierarchical model is
that model parameters are themselves defined as a model, whose pa-
rameters are also estimated from data (Gelman, 2006). Thus, while
the full observation density is used for estimating average phenological
parameters (as in a pooled model), the inter-annual variation in model
parameters (e.g., in the start of season) is also specificallymodeled from
the data. The partial pooling hereby allows for individual variances to be
drawn for each year, though all variances arise from a common
underlying process. In this way, the estimation of inter-annual variation
in a model parameter is less sensitive to inter-annual variations in data
density, since in data scarce years the estimate of variancewill approach
the overall mean (Gelman, 2006). Finally, the Bayesian approach allows
for quantifying uncertainty in parameter estimates that go beyond clas-
sical frequentist methods (Ellison, 2004), and it allows the incorpora-
tion of prior information such as land cover, climate, or topographic
data to further improve the precision of parameter estimates.

The aim of this paper is to demonstrate and evaluate a new Bayesian
hierarchical modeling approach for estimating trends in phenological
parameters from Landsat time series. We utilize the newly developed
modeling approach for estimating the spatial and temporal variation
in spring phenology of broad-leaved forests in the Bavarian Forest Na-
tional Park in southern Germany. Specifically, we estimate inter-annual
variation in the start of season (green-up) and compare those estimates
to ground based estimates of bud-break. We further discuss remaining
challenges, potential enhancements, and practical issues with the
proposed model. We conclude by linking this research with potential
applications in global change research.

2. Model development

Weused a five-parameter logistic function tomodel spring phenology
as in Melaas et al. (2013):

g t;βið Þ ¼ β1 i½ � þ β2 i½ �− β5 i½ � � t
� �� �

� 1

1þ e−β3 i½ �� t−β4 i½ �ð Þ� � ð1Þ

where βi={β1[i],β2[i],β3[i],β4[i],β5[i]} is a five-dimensional vector of model
parameters for each pixel iwith β1 theminimum (seasonal minimum), β2

the difference betweenminimumandmaximum (seasonal amplitude), β3

the inflection point (green-up rate), and β4 the timing of the inflection
point (start of season). The seasonal minimum describes the off-season
(i.e. winter) spectral background value. The seasonal amplitude describes
the spectral difference between off-season and on-season activity of the
observed vegetation. The start of season describes the approximate
timing of transition from off-season to on-season condition, whereas
the green-up rate describes the speed of transition. The parameterβ5 con-
trols for an often observed decline in vegetation greenness in the summer
months (greendown factor; Elmore et al., 2012). Model residuals are
modeled as normally distributed with equal variance σ2, yielding for
each time step t and each pixel i:

yti ¼ N g t;βið Þ;σ2� � ð2Þ

Since the five phenological parameters are likely correlated with
each other, the vector βi is assumed to follow amultivariate normal dis-
tributionMVN(μβ,Σβ) with μβ being the vector of meanmodel parame-
ters and Σβ being the variance-covariance matrix of the five model
parameters. Since the five model parameters are measured on very dif-
ferent scales (i.e., day of year versus spectral index values), which can
cause instability in sampling the posterior distribution, we re-parame-
terize the model to a non-centered formulation (Bernardo et al.,
2003). Therefore, we re-write the multivariate normal formulation of
βi as:

βi ¼ diag σ2
β � τ

� �
� Lβ � zβ

� �T
þ μβ ð3Þ

where σβ
2 is a vector of variances for each model parameter, which

are scaled by a scale vector τ; Lβ is the Cholesky decomposition of a
5 × 5 correlation matrix Cβ with Cβ ¼ Lβ

�Lβ
T ; and zβ is a vector of

five N(0, 1) random variables. We assign a weakly-informative
LKJ(2) prior on the correlation matrix Cβ and weakly-informative
half–Cauchy(0,1) priors on the model parameter variances. Adding
the vector μβ centers the posterior distribution of the five model pa-
rameters according to prior guesses on their approximate location.
The centering vector μβ and the scale vector τ must be given by the
user and we give recommendations on how it can be determined in
the later sections.

To account for variations in the start of season parameterβ4 between
years j, we add a hierarchical level to our model:

yijt ¼ N g t;β
0
ij

� �
;σ2

� �

β
0
ij ¼ β1 i½ �;β2 i½ �;β3 i½ �;β4 i½ � þ ϕ j½ �;β5 i½ �

n o ð4Þ

where ϕj is a random effect allowing for inter-annual variation in the
start of season parameter. The model specified in Formula (4) thus al-
lows for estimating per pixel phenological parameters (βi) while simul-
taneously accounting for variation in the start of season among years
(ϕj). We here like to note that for each of the five phenological parame-
ters a random effect might be added, though for demonstration pur-
poses we here present only one annually varying phenological
parameter (see the Discussion for further information). The random ef-
fect in start of season is assumed to follow a normal distributionN(0,σϕ

2)
with zeromean and varianceσϕ

2, which is assigned aweakly informative
half–N(0,5) prior. The model is made complete by assigning a weakly
informative half–Cauchy(0,1) prior on σ2.
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