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1. Introduction

The conversion of the geological characteristics of
a field into a digital model is necessary to perform
analyses such as scheduling the exploitation of a mine or
detecting the pollution in a sedimentary environment.
This conversion can be performed in two main different
manners: either by understanding and mimicking the
sedimentary processes (genetic models) or by directly
reproducing the current facies arrangement resulting
from several sedimentary and transformation processes
(stochastic models).

The genetic models are the most efficient way to
reproduce realistic sedimentation textures as they are
based on physical processes (Cojan et al., 2005), but they
require the precise knowledge of the whole set of
processes that have led to the studied deposit. Moreover,

honoring exactly the information provided by the data is
still challenging (conditioning step). On the contrary, for
stochastic models which are based on the resulting actual
deposit image, the conditioning step is usually tractable.
Different stochastic models are classically used; in those
methods the texture characteristics are provided either in
the training image for the multipoint simulation (MPS)
(Mariethoz et al., 2010; Strebelle, 2002) or through the
multivariable stochastic model for the sequential indicator
simulation (SIS) (Alabert, 1987; Emery, 2004) and the
truncated Gaussian model (TGS) (Matheron et al., 1987).
With the latter TGS method, it is easy to define a lot of
different multivariate models and hence to produce a large
variety of arrangements with different relationships
between facies.

The basic ingredients of TGS consist in the proportions
of the facies and their spatial distribution and relations-
hips. Initially the truncated Gaussian model has been
introduced for reproducing a simple organization of
ordered lithotypes. The lithotypes are then obtained by
thresholding a single underlying Gaussian random func-
tion (GRF). It suffices to split the total domain of variation
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A B S T R A C T

The interest of a digital model to represent the geological characteristics of the field is well

established. However, the way to obtain it is not straightforward because this translation

is necessarily a simplification of the actual field. This paper describes a stochastic model

called truncated Gaussian simulations (TGS), which distributes a collection of facies or

lithotypes over an area of interest. This method is based on facies proportions, spatial

distribution and relationships, which can be easily tuned to produce numerous different

textures. Initially developed for ordered facies, this model has been extended to complex

organizations, where facies are not sequentially ordered. This method called pluri-

Gaussian simulation (PGS) considers several Gaussian random functions, which can be

correlated. PGS can produce a large variety of lithotype setups, as illustrated by several

examples such as oriented deposits or high frequency layering.
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of the GRF in intervals and to assign each interval to a
lithotype. The bounds of the interval (or the thresholds of
the underlying GRF) are calculated so as to match the
proportions of the various lithotypes. Finally the spatial
characteristics of the GRF are related to those of the
lithotype indicators which are described by their experi-
mental variograms.

When the lithotype organization is more complex, in
particular not sequentially ordered, it is necessary to
consider several GRFs (hence the method called pluri-
Gaussian, PGS). In that case, each lithotype is defined by its
thresholds along each GRF. The partition scheme of the
different GRFs into lithotypes is described by a synthetic
graph called the lithotype rule. Finally, if some lithotypes
must present linked shapes, it is possible to introduce
some dependency between the GRFs (correlating them for
example).

This paper provides a detailed description of the
truncated Gaussian simulations and their derived
methods. By a series of examples, it illustrates the large
variety of lithotype setups produced simply by varying the
lithotype rule and/or using particular structures for the
underlying GRFs.

2. Method description

The geological interpretation to be modeled is composed
of different sets of interest which constitute a partition of the
space. These sets are the qualitative variables (lithotypes or
facies in this paper) to be reproduced.

2.1. Qualitative properties

In order to perform calculations with qualitative
properties it is necessary to transform them into numerical
values beforehand. This can be done using the indicator

function: the indicator of a given lithotype is equal to
1 when the observed point belongs to this lithotype and
0 otherwise. There are as many indicators as there are
lithotypes involved in the deposit description, which turns
the qualitative properties into a multivariable numerical
setup. Moreover, as the indicators are numerical variables,
it is now possible to consider their spatial characteristics
through traditional tools such as simple and cross-
variograms. The indicator variogram measures the proba-
bility that two points do not belong to the same lithotype
(Eq. 1) as a function of their distance:

gB hð Þ ¼ 0:5 P x 2 B; x þ hð Þ =2 Bð Þ þ P x =2 B; x þ hð Þ 2 Bð Þ½ � (1)

where B is a lithotype, P a probability, x a point in the field,
and h the distance between point x and another point in the
field.

The indicator cross-variogram measures the probability
that two points belong to two different lithotypes (Eq. 2) as
a function of their distance:

gAB hð Þ ¼ 0:5E IA x þ hð Þ�IA xð Þð Þ IB x þ hð Þ�IB xð Þð Þ½ �
¼ �0:5 P x 2 A; x þ hð Þ 2 Bð Þ þ P x 2 B; x þ hð Þ 2 Að Þ½ �

(2)

where A and B are two lithotypes and I their indicators, E

the means, P a probability, x a point in the field, and h the
distance between point x and another point in the field.

As the lithotypes constitute a partition of the space,
when the indicator of a given lithotype is equal to 1, the
indicators of the other lithotypes are equal to 0. This leads
to particular relationships relating simple and cross-
variograms of the indicators.

For instance, in Fig. 1a, a simulation has been performed
using an object based model (Boolean simulation): in a
white background, elongated grey objects are overlaid by
black circular objects. Fig. 1b represents the simple
variogram of each indicator calculated in north–south

Fig. 1. On a simulated image in three sets (a), two directional variograms (NS and EW) are computed for each set (b: simple variograms) and for each pair of

sets (c: cross-variograms).
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