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1. Introduction

The series of spherical harmonics is the commonly used
method for global gravity field modeling; however,
Spherical Radial Basis Functions (SRBFs) can locally
represent the gravity field of the Earth. The Stokes

coefficients of spherical harmonics are sensitive to local
signal changes, although SRBFs are often used to model the
higher frequencies of the field and can be used as an
alternative method for regional modeling of the Earth’s
gravity field and the corresponding quasigeoid models. The
Earth’s gravity field can be expressed by a linear
combination of the SRBFs (Barthelmes and Dietrich,
1991). The kernels of SRBFs are mostly of the inverse-
distance type, which can be defined in different ways;
for instance, the point-mass kernel (Barthelmes, 1988;
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A B S T R A C T

Spherical Radial Basis Functions (SRBFs) can express the local gravity field model of the

Earth if they are parameterized optimally on or below the Bjerhammar sphere. This

parameterization is generally defined as the shape of the base functions, their number,

center locations, bandwidths, and scale coefficients. The number/location and bandwidths

of the base functions are the most important parameters for accurately representing the

gravity field; once they are determined, the scale coefficients can then be computed

accordingly. In this study, the point-mass kernel, as the simplest shape of SRBFs, is chosen

to evaluate the synthesized free-air gravity anomalies over the rough area in Auvergne and

GNSS/Leveling points (synthetic height anomalies) are used to validate the results. A two-

step automatic approach is proposed to determine the optimum distribution of the base

functions. First, the location of the base functions and their bandwidths are found using the

genetic algorithm; second, the conjugate gradient least squares method is employed to

estimate the scale coefficients. The proposed methodology shows promising results. On the

one hand, when using the genetic algorithm, the base functions do not need to be set to a

regular grid and they can move according to the roughness of topography. In this way, the

models meet the desired accuracy with a low number of base functions. On the other hand,

the conjugate gradient method removes the bias between derived quasigeoid heights from

the model and from the GNSS/leveling points; this means there is no need for a corrector

surface. The numerical test on the area of interest revealed an RMS of 0.48 mGal for the

differences between predicted and observed gravity anomalies, and a corresponding 9 cm

for the differences in GNSS/leveling points.
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Barthelmes and Dietrich, 1991; Blaha et al., 1986; Lin et al.,
2014; Shahbazi et al., 2015; Sünkel, 1981; Weightman,
1965). Later the higher order of point-mass, radial multi-
poles, were introduced by Marchenko (1998) and used by
Foroughi and Tenzer (2014). Poisson wavelets, were
derived by Holschneider et al. (2003) and later used by
Chambodut et al. (2005); Klees and Wittwer (2007); Klees
et al. (2008); Panet et al. (2006); Safari et al. (2014); and
Tenzer et al. (2012). The band-limited Blakman base
functions were first used by Schmidt et al. (2004, 2005).
Tenzer and Klees (2008) showed that there is no significant
difference between different types of kernels when they
are parameterized properly.

The parameterization of the gravity field using SRBFs
consists in defining the type of kernel, the number of
kernels, the location of the center of the kernels, and kernel
bandwidths that all have a considerable effect on the
predicted model. Using many kernels leads to overpara-
meterization, while applying a low number of them can
only represent the low-frequency part of the model. The
SRBF kernel is defined on or within the sphere which is
completely located inside the Earth’s topography and is
known as the Bjerhammar sphere (Moritz, 1980). SRBF
kernels are typically defined as inverse distances between
integration points in the target area and computation
points in the data coverage. An inverse relation exists
between the kernel’s bandwidth and the kernel’s depth
into the Bjerhammar sphere. Some studies (Klees et al.,
2008; Tenzer et al., 2012) consider the depth of the kernels
as separate unknown parameters rather than their 2D
location. However, the unknown parameters can be
merged into 3D positions of the kernels on the Bjerhammar
sphere and be found in one step (Shahbazi et al., 2016).

Finding the number of base functions (kernels) and the
location of their centers is the first step of SRBF
parameterization. Different methods have been proposed
to find the optimum number with respect to the location of
the observation points and the depth of kernels into the
Bjerhammar sphere. Marchenko (1998) used radial multi-
pole kernels below the observation points and then
optimized the solution using a sequential multi-pole
algorithm. The depth and order of the radial multi-pole
kernels were then determined by the covariance function
of the signal around the observation points. Klees and
Wittwer (2007) and Klees et al. (2008) proposed a
methodology that was fully based on the distribution of
the data. They used an initial regular grid of the SRBFs to
carry out the first adjustment; then they added local base
functions to the areas where the residuals between
observation and predicted anomalies were larger than a
predefined tolerance. The generalized cross-validation
method was also applied to approximate the optimal
depth. Their method was only applicable in areas with
dense gravity data coverage and smooth topography.
Tenzer et al. (2012) analyzed the least squares approxi-
mation of the gravity field via Poisson wavelets of order
3 on various spherical equiangular grids, and they used the
method of minimization of the RMS differences between
predicted and observed gravity disturbances to find the
optimal depth of the kernels. They reduced the number of
the required base functions by applying topographical

corrections. Foroughi and Tenzer (2014) introduced the
Levenberg–Marquardt algorithm to minimize the number
of base functions and find their depth based on Least
Square (LS) adjustment; they suggested the use of a two-
step process to find the optimal number of base functions.
In the first step, the optimum number of base functions
was defined based on the fitting between observed and
predicted gravity anomalies and in the second step the
optimum number was chosen according to best fitting
between observed and predicted quasigeoidal heights. The
common optimum number between the two steps was
then selected as the number of kernels. The two-step
method did not require adding extra local kernels
manually, but it was computationally expensive and
needed independent control points with two types of
observations: gravity anomalies and normal heights. Later
Shahbazi et al. (2016) modified this method so that the
number of base functions could be chosen in one step.
Their method allows one to find the optimum number
based on estimated errors in the observation data as well
as their distribution.

The proposed methods of parameterization of SRBFs in
previous studies are limited to the initial choice of the
location and depth of the kernels and some are not able to
choose the number of kernels automatically. These
methods might represent the ‘‘local minimum’’ of the
parameterized solution because their final solution does
not differ significantly from their initial values. They
mostly use corrector surfaces to fit the final gravity model
to local GNSS/Leveling data points, which simply hides the
discrepancies between the predicted and the observed
model. The intention of the current study is to employ the
Genetic Algorithm’’ (GA) and let the parameters of the
kernel of SRBFs be chosen based on the information
provided in the observation data. The proposed method in
this study can search among all the possible solutions of
parameterized SRBFs and find the ‘‘global minimum’’ of the
target function that is set to be minimized in the process.
Once the parameters of SRBFs are found using GA, the
system of linear equation, in the LS sense, is solved based
on the Conjugate-Gradient (CG) technique, which leads to
an un-biased solution, unlike the previously used approa-
ches.

The theory of SRBFs in gravity field modeling is
described in Section 2. General information on GA is
provided in Section 3.1. The iterative approach of CG is
presented in Section 3.2. The methodology of problem
solving is explained in Section 4. The numerical results and
discussion are touched on in Section 5 and Section 6,
respectively. At the end, Section 7 summarizes the remarks
of this contribution.

2. Theory of regional gravity field modeling using SRBFs

According to the Runge–Krarup theorem, a harmonic
function can be regarded as an expansion of the non-
orthogonal base functions. The disturbing potential of the
Earth’s gravity field is considered harmonic above the
geoid (Moritz, 1980), therefore, we can represent it as a
linear combination of the set of non-orthogonal base
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