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A B S T R A C T

We propose a framework to systematically generate event landslide inventory maps from satellite images in
southern Taiwan, where landslides are frequent and abundant. The spectral information is used to assess the
pixel land cover class membership probability through a Maximum Likelihood classifier trained with randomly
generated synthetic land cover spectral fingerprints, which are obtained from an independent training images
dataset. Pixels are classified as landslides when the calculated landslide class membership probability, weighted
by a susceptibility model, is higher than membership probabilities of other classes. We generated synthetic
fingerprints from two FORMOSAT-2 images acquired in 2009 and tested the procedure on two other images, one
in 2005 and the other in 2009. We also obtained two landslide maps through manual interpretation. The
agreement between the two sets of inventories is given by the Cohen’s k coefficients of 0.62 and 0.64, respec-
tively. This procedure can now classify a new FORMOSAT-2 image automatically facilitating the production of
landslide inventory maps.

1. Introduction

Landslides occur when slopes are disturbed by earthquakes, storms,
human activities, or a combination of these factors (Aleotti and
Chowdhury, 1999). Landslides, which are frequent and widespread in
the world, can cause fatalities and social and environmental damages.
Landslides can involve movements of sliding, flowing, toppling, and/or
falling (Cruden and Varnes, 1996; Cruden and Varnes, 1996; Sidle and
Ochiai, 2006). A landslide inventory map records the location of mass
movements (Guzzetti et al., 2012).

Mapping landslides is a difficult task. Conventional methods rely on
the visual interpretation of stereoscopic aerial photographs or satellite
images, aided by field surveys. They are time consuming and resource
intensive (Guzzetti et al., 2012). Quantitative image analysis has fa-
cilitated the task in recent years. Landslides mapping is a type of image
classification problem, as landslides represent one of many classes that
constitute a land cover (Michie et al., 1994). Several semi-automatic
and automatic methods have been used to map landslides. They can be
grouped according to: (i) pixel based (Borghuis et al., 2007; Mondini

and Chang, 2014; Parker et al., 2011) or object oriented (Cheng and
Han, 2016; Lu et al., 2011; Martha et al., 2010, 2011, 2012; Stumpf and
Kerle, 2011), (ii) change detection analysis (Yang and Chen, 2010) or
single image approach (Borghuis et al., 2007; Mondini et al., 2013,
2014), and (iii) supervised or unsupervised classifications (Mondini
et al., 2011a,b). In most of the cases, a combination of different ap-
proaches is used (Guzzetti et al., 2012). The training phase of these
methods demands resources and time. Training samples can be ob-
tained using site visits, maps or, more commonly, through photo in-
terpretation of the satellite images (Richards and Jia, 2006; Gupta and
Rajan, 2011).

This study investigates whether it is possible to use a set of training
samples prepared from independent images capturing previous land-
slide events. Models of samples represent a digital library of an “a priori
knowledge” to obtain a new landslide map once a new image is avail-
able on the area where the library has been prepared.

In this work, the library trains a supervised Maximum Likelihood
(ML) classification. This choice dictates constraints in the definition of
the elements of the library (Foody et al., 1992). ML assigns each pixel of
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an image to a land cover class (LCC) by measuring a distance between
the pixel’s spectral values and some knowledge on the land cover
spectral properties (fingerprints), which are assumed to be normal
multivariate distributed. Distribution parameters refer to the LCC po-
pulation properties, which are unknown but can be estimated by
modelling the statistical spectral behaviour of some training samples.

We obtained our fingerprints by selecting random samples in a set of
multi-temporal images. Our sampling method and image datasets al-
lowed having some LCC spectral behaviour variability, providing an
uncertainty measure of the estimated parameters.

To measure the potential effects of training and classification data
set shifts (Tuia et al., 2016), we adopted Montecarlo analysis to com-
pute the error propagation in the final classification. If the propagated
uncertainty is too high, the classification is to be refused, and the li-
brary needs to be upgraded.

The semantic landslide LCC is a bare soil class subsample. To dis-
tinguish landslides among other geomorphological features like riv-
erbeds or run outs, an existing a priori geomorphological knowledge
(Parker et al., 2011; Mondini and Chang, 2014) on where event land-
slides are expected to be more (or less) abundant in a region is in-
troduced as filter.

We applied the proposed approach to mapping landslides triggered
by typhoons in southern Taiwan. We prepared training samples from
two satellite images post-Typhoon Morakot, and we classified land-
slides on two other images, one pre-Morakot and the other post-
Morakot. We compared our final maps with inventories prepared
through manual interpretation.

2. Method

The framework includes two main blocks: the library preparation
and the classification of new images (Fig. 1). The ML choice constrains

the preparation of the library, establishing a dependence of the first
block to the second.

2.1. Maximum likelihood classifier

In a Bayesian framework (Richards and Jia, 2006), the probability
for the identification of a LCC wi in a pixel, given its reflectance, is:

=x x xp w p w p w p( | ) ( | ) ( )/ ( )i i i (1)

where p w( )i is the probability that class wi occurs in the image, assumed
to be equal for all classes; xp w( | )i is the probability that a pixel with its
reflectance belongs to a class wi given the class wi characteristics; and

xp ( ) is the probability to find a pixel from any class of M LCCs at its
location, obtained with the formula:
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Using a ML classifier, the probability distributions describing the
statistical spectral properties of each LCC must be normal multivariate.
The class membership probability (CMP) of pixel x, given its spectral
values, to class wi, is then:
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where μi and Σi are the mean (central tendency) and the covariance
(dispersion) of the multivariate normal probability distribution re-
presenting the class wi, N is the number of training classes, and t stands
for “transpose.” μ and Σ are unknown, but they can be estimated ((μ,
Σ)- > (m, S)) from a representative set of training samples pixels se-
lected in the image to classify.

Fig. 1. procedure workflow. It includes five blocks (rectangles): a Fingerprints generator, a Random numbers generator, a Synthetic models generator, the ML estimator, and the CM
estimator. Parallelograms represent input/output data: training images, new images, a susceptibility map, landslide map. Rhombuses represent completeness, normality, separability and
spericity tests.
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