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A B S T R A C T

LiDAR has been an effective technology for acquiring urban land cover data in recent decades. Previous studies
indicate that geometric features have a strong impact on land cover classification. Here, we analyzed an urban
LiDAR dataset to explore the optimal feature subset from 25 geometric features incorporating 25 scales under 6
definitions for urban land cover classification. We performed a feature selection strategy to remove irrelevant or
redundant features based on the correlation coefficient between features and classification accuracy of each
features. The neighborhood scales were divided into small (0.5–1.5 m), medium (1.5–6 m) and large (> 6 m)
scale. Combining features with lower correlation coefficient and better classification performance would
improve classification accuracy. The feature depicting homogeneity or heterogeneity of points would be
calculated at a small scale, and the features to smooth points at a medium scale and the features of height
different at large scale. As to the neighborhood definition, cuboid and cylinder were recommended. This study
can guide the selection of optimal geometric features with adaptive neighborhood scale for urban land cover
classification.

1. Introduction

Light Detection and Ranging (LiDAR) is an important data source
for generating DTM, topographic maps, 3D city models, land cover
classifications(Yan et al., 2015; Rottensteiner, 2012), ecosystem studies
(Yao et al., 2012) and natural hazard assessments (Jaboyedoff et al.,
2012). However, due to the diversity of object classes, the complexity of
object structures and the variability of point features, classification is
still an active field of research. Early studies focused on classifying the
points into ground points and non-ground points, which is also called
filtering (Axelsson, 1999; Meng et al., 2010). With the development of
LiDAR technology, denser points with high precision are obtained in
urban areas. LiDAR data are also used for the classification of non-
ground objects, such as buildings or vegetation (Axelsson, 1999). In
different scenes, many methods are developed to achieve this goal.
Classification can be applied directly to the 3D points or pixels of a
Digital Surface Model derived from the LiDAR points. Each point or
pixel has its own potential features which are applied to different
methods of classification. Supervised classification is the most common
method, including maximum likelihood classification, artificial neural
networks, adaptive boosting, support vector machines and Random

Forest (Yan et al., 2015; Rottensteiner, 2012). Relevant features are
often uncertain for supervised classifiers and it is a common strategy to
introduce more candidate features to get a better representative of the
domain (Dash and Liu, 1997). As a new candidate of feature space,
LiDAR point cloud data describes the geometrical information of objects
in 3D space directly (Demantké et al., 2011). The geometry is computed
for each point with its neighbor as a set of geometric features.
Therefore, geometric features can be used together with intensity
(Zhou, 2013), full-wave features (Alexander et al., 2010; Alexander
et al., 2011) and high-resolution satellite imagery (Guan et al., 2013;
Yanfeng et al., 2015) Feature extraction and feature selection are the
two broad categories for reducing not important features. Since feature
selection preserve the physical information of the original features,
previous work explored the importance of features to select a subset of
highly discriminant features. Chehata et al. (2010) compared fifteen
geometric features and other six non-geometric features with Random
Forest classifier for urban scene classification. The results demonstrate
that height difference and height variance are the top two most
important features and that height differences are more important than
the others. Guo et al. (2011) explored the relevance of airborne LiDAR
and multispectral image data for urban scene classification. The feature
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vector was composed of optical features, multi-echo LiDAR features,
full waveform LiDAR features and three geometric features. Unlike
height difference, the plane angle and residuals are of low importance
in the comparison. Niemeyer et al. (2012) presented a context-based
Conditional Random Field classifier with LiDAR features to classify
urban scenes and obtained reliable classification results. Although the
geometric features are often used in the classification, the importance of
each feature nor the effect of combining features is clear.

Moreover, the selection of neighbor of points is a critical factor for
calculating geometric features and influences the classification accu-
racy of land cover. The neighbors of points are typically chosen as the k
nearest or all points in a cylinder or sphere (Weinmann et al., 2014). As
to grid based features, the neighbor of pixel refers to window size. The
neighborhood scale are traditionally fixed with an empirical value
(Alexander et al., 2010; Tang et al., 2014). The optimal neighborhood
scale may be different for each feature. Some studies explored the
optimal neighborhood scale for LiDAR features. Niemeyer et al. (2011)
found that overall accuracy had a local maximum at seven neighbors.
The selected features included residuals of an estimated plane and as
well as the features dimensionality based on the eigenvalues.
Demantk & et al. (2011) retrieved the optimal neighborhood scale of
eigenvalue-based features for labeling point dimensionality by mini-
mizing entropy feature and maximizing similarity index. Lack of
research on neighborhood scale makes it necessary to explore the
optimal neighborhood scale for each geometric feature.

This study aimed to explore the relationship between classification
accuracy and geometric features with different neighborhood scale
under different neighborhood definition and to propose criterion for
selecting optimal geometric feature with adaptive window size for
urban land cover classification. The paper was structured as follows.
The geometric features were described in Section 2. A feature selection
strategy was developed in Section 3. The selected features and
classification results were presented in Section 4. The results were
discussed in Section 5, and conclusions were drawn in Section 6.

2. Geometric features of LiDAR points

2.1. Geometric features of LiDAR points

Height difference (Δmin) between the current point and the lowest
point is the most commonly used feature, as it roughly measures local
variation. However, Δmin takes only the current height and the lowest
point into account and loses useful information of the other points.
Axelsson (1999) uses the second derivatives of interpolated raster
images to enhance variations. Maas (1999) introduces the Laplace
operator, maximum slope measures and original height data to classify
the data. Unlike previous features constructed by variation, Filin (2002)
presented surface parameters to describe the planarity. Additionally,
Gross and Thoennessen (2006) proposed eigenvalue-based values to
depict 3D characters. Chehata et al. (2009) proposed grouped point
cloud features, including height-based LiDAR features (height differ-
ence compared to its neighbors, height difference between first and last
pulses, height variance and local curvature), eigenvalue-based LiDAR
features computed with the variance-covariance matrix of the local
neighborhood (anisotropy, planarity, sphericity and linearity), and
local-plane-based LiDAR features (deviation angle, variance of devia-
tion angles and residual of the local plane estimated in a cylinder).
Geometric features used for LiDAR classification can be shown in
Table 1.

In addition to the geometric features listed in Table 1, some
geometric features are calculated after rasterizing LiDAR points, such
as the Laplace filter, Sobel operator (Maas, 1999) and texture measures
(height homogeneity, height contrast, height entropy, height correla-
tion) (Im et al., 2008). Previous studies demonstrate that the most
importance metrics are mean height, height standard variance (Gross
and Thoennessen, 2006), height difference (Alexander et al., 2010),

obvious height and minimum value of height in a neighborhood
(Charaniya et al., 2004).

2.2. Feature selection method

To preserve the physical information of the original features,
previous work reduced not important features with the effectiveness
of features for classification, which belongs to embedded models of
feature selection. However, to evaluate the importance of selected
features, it’s necessary to compare different feature selection and
feature extraction method. In the section, we introduce the major
method for feature selection.

Assuming features are independent, feature selection is further
divided into three groups − filter models, wrapper models, and
embedded models. Filter models depends on the characteristics of
features. It first ranks features with criteria, such as fisher score (Duda
et al., 2012), mutual information (Koller and Sahami, 1996) and feature
relief (Robnik-Šikonja and Kononenko, 2003), and then select the
highest ranked features. However, the optimal features subset would
relate to classifier, which is ignored in filter method. Wrapper models
compare the effectiveness of classifier with all the combination of
features and then select the subset with highest quality. Forward
selection and backward elimination the two most frequently used
method (Mao, 2004). However, the combination count for m features
is 2m, which make it impractical for a large m. Embedded models
embed feature selection with classifier construction, including pruning
methods, build-in mechanism and regularization models (Dash and Liu,
1997). Random Forest is a decision tree-based ensemble classifier and
provides feature importance after classification. Chehata et al. (2009)
used the Random Forest to classify full-waved LiDAR points, achieving
an overall accuracy of approximately 95% for the classes of building,
vegetation, artificial ground and natural ground. Wei et al. (2012)
evaluated the feature relevance of point cloud provided with an
AdaBoost classifier and verified with the importance of Random Forest.
In this paper, we proposed a feature selection method to select features.
To evaluate the method, we compared the selected features with other
feature selection method.

3. Methodology

3.1. Geometric features extraction

Geometric feature was influenced with the types of features,
neighborhood definition and neighborhood scale. Apart from using
most of most of features extracted from point data listed in Table 1, we
added additional statistical features, such as the min, max, mean and
the medium of height of points within neighborhood. These features
consisted of four series: (1) Ten height-statistics-based features: min
(Smin), max(Smax), mean(Smean), mod(Smod), median(Smed), data range
(Sdr), standard variance(Sstd), Coefficient of Variation(Scoev), skewness
(Sskw), and kurtosis(Skrt); (2) Four height-texture-based features: z-min
(Δmin), z-max(Δmax), z-mean(Δmean), and max slope divided by π to
normalization(Δslope); (3) Five fitting-plane-based features: the para-
meter to coordinate x of the fitting plane (Πa), the parameter to
coordinate y of the fitting plane (Πb), the correlation coefficient of
the fitting plane (ΠR2), the root-mean-square error of the fitting plane
(ΠRMSE), and the normal vector angle of the fitting plane divided by π
(Πang); and (4) Six eigenvalue-based features: λ1–λ3, linearity(λL),
planarity(λP), and sphericity (λS). The neighborhood was defined as
cuboid (Dcubd), cube (Dcube), cylinder (Dcyln), sphere (Dsphr), k nearest
points in 3D (Dk3d) and k nearest points in 2D projection (Dk2d).

With the increase of neighborhood scale, the proportion of addi-
tional neighborhood points to previous neighborhood points would
decrease. With a large scale, expansion of scale would almost not affect
geometric features. We recommended selecting scales corresponding to
geometric sequences by Eq. (1).
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