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a  b  s  t  r  a  c  t

This paper  introduces  a novel  methodology  for  generating  15-day,  smoothed  and  gap-filled  time  series
of high  spatial  resolution  data.  The  approach  is  based  on  templates  from  high  quality  observations  to  fill
data  gaps  that are subsequently  filtered.  We  tested  our method  for one  large  contiguous  area  (Bavaria,
Germany)  and for nine  smaller  test  sites  in  different  ecoregions  of Europe  using  Landsat  data.  Overall,  our
results  match  the validation  dataset  to a high  degree  of  accuracy  with  a mean  absolute  error  (MAE)  of  0.01
for visible  bands,  0.03  for  near-infrared  and  0.02  for short-wave-infrared.  Occasionally,  the  reconstructed
time  series  are  affected  by artefacts  due  to  undetected  clouds.  Less  frequently,  larger  uncertainties  occur
as  a result  of extended  periods  of missing  data.  Reliable  cloud  masks  are highly  warranted  for  making
full  use  of time  series.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

An increasing number of analytical and methodological tools,
applications and services require continuous and frequently
updated Earth Observation (EO) time series data. Examples are land
surface phenology (Verbesselt et al., 2010a; Verbesselt et al., 2010b;
Melaas et al., 2013), agricultural monitoring systems (Moran et al.,
1997), crop yield mapping and prediction (Unganai and Kogan,
1998; Rembold et al., 2013), irrigation management (Vuolo et al.,
2015a; Vuolo et al., 2015c), mapping of crop types (Wardlow et al.,
2007) and cropping systems (Sakamoto et al., 2006; El Hajj et al.,
2009). The opportunities for exploiting time series improved rad-
ically in 2008 when the Landsat program opened its more than
40 years archive (Woodcock et al., 2008). Further improvements
are expected thanks to the European Copernicus program (Berger
et al., 2012). Its first optical high resolution satellite (Sentinel-2A)
was successfully launched on April 27th 2015 and a twin satellite
will follow in early 2017 (Sentinel-2B).

One main limiting factor for full exploitation of these high spa-
tial resolution optical time series relates to data gaps and noise
due to clouds, cloud shadow and snow cover. Impacts depend
on season, topography, location and environment (e.g. mountain-
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ous and coastal areas with usually less usable data) (Beck et al.,
2006; Ju and Roy, 2008). Various approaches attempted to recon-
struct EO data to obtain high resolution cloud- and gap-free images
using temporal composited mosaicking (Bielski et al., 2007; Roy
et al., 2010; Eivazi et al., 2015; Lei and Siqueira, 2015), histogram
matching (Helmer and Ruefenacht, 2005; Rakwatin et al., 2007;
Shapira et al., 2013), pixel based compositing (Griffiths et al., 2013;
Hermosilla et al., 2015a; Vanonckelen et al., 2015; Zhu et al., 2015a),
data fusion (Gao et al., 2006; Roy et al., 2008; Hilker et al., 2009;
Zhang et al., 2013; Bisquert et al., 2015; Gevaert and García-haro,
2015) and spatial-temporal gap-filling (Xu et al., 2015; Malambo
and Heatwole, 2016). A review can be found in (Shen et al., 2015).
These approaches are often applied to gap-fill time series of spectral
indices and frequently do not provide sufficient temporal resolu-
tion (e.g. 15-day) to study highly dynamic crop growing conditions
at high spatial resolution (i.e. 30 m with Landsat).

The scope of this paper is to introduce a novel methodol-
ogy to create spatially and temporally consistent and continuous
time series of cloud-free, bottom-of-the-atmosphere (BOA) multi-
spectral images at high spatial and temporal resolution. To develop
and validate the methodology, we use Landsat data and compare
reconstructed images against non-cloudy reference data not used
during the filtering and gap-filling process.
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Fig. 1. Illustration of the main radiometric problems occurring when working with high spatial resolution data, hindering the generation of high quality time series.

2. Material and methods

The proposed methodology is applied on temporal stacks of
Landsat data, where the data cube includes layers being (partially)
cloudy and/or showing sensor artefacts (Fig. 1). The novelty of the
proposed approach stems from two innovative aspects:

• the filling of data gaps using templates (e.g. information derived
from the neighbourhood of the pixel to be filtered) complement-
ing the available data where missing, and

• the use of a state-of-the-art Whittaker smoother for filtering the
previously gap-filled time series.

The methodological workflow to produce smooth and gap-filled
images is presented in Fig. 2 and the key elements are illustrated
in Fig. 3 for one exemplary pixel in two spectral channels.

In the first step, Landsat data are clipped in image tiles of equal
size (1000 × 1000 pixels) preserving the native pixel size, geo-
graphic projection (UTM WGS  84) and day of acquisition. Then, in
a second step, a mask is constructed, which is used to weight each
observation in the subsequent filtering process. For the construc-
tion of this mask, an essential requirement is the identification of
data gaps. We  rely on the Function of mask (‘fmask’) algorithm, part
of the Landsat production chain, to flag clouds, cloud shadows and
snow pixels (Zhu et al., 2015b). Our binary mask takes a value of
w = 1 (i.e. valid observations) for non-cloudy and non-missing val-
ues and a value of w = 0 (not valid observations) for all other pixels
(including snow).

The data is transformed in a third step into equally spaced
observations with a temporal resolution of 15 days resulting in 24
regularly spaced images per year (2 images per month). The date
of the first day of the compositing period is assigned to the new
images (e.g. 1st and 16th of each month). If two (or more) valid
observations for the same pixel are found within a 15-day period,
the average is calculated and used; the mask value remains at w = 1
(valid observation). Note that gaps are still present in these com-
posite images.

The forth step consists in building a pool of so-called ‘templates’.
Templates are time series of pixels characterized by a high num-
ber of valid observations in the temporal dimension. Before making
use of the templates for gap-filling, gaps in the templates are filled

Table 1
Overview of parameters and recommended settings.

Parameter Description Min. Max Standard
value

�WS Smoothing parameter
of the Whittaker filter

1 9 3

w  Weight assigned to:
cloudy pixels

0

clear pixels 1
wt  Weight assigned to

templates
0.1 0.7 0.5

nT Number of considered
templates

500 1000 500

tpp  Templates considered
per pixel

1 5 5

using the Whittaker smoother developed by Eilers (Eilers, 2003) (a
weighted spline with second order finite difference penalty) and
a smoothing parameter (�WS = 0.5) that preserves fidelity to data
rather than data smoothness (Atzberger and Eilers, 2011) (Eq. (1)).
The template selection is performed considering multiple years in
the temporal stack of 15-day images (e.g. 2009–2016). To ensure
representativeness of the templates, the template search is strat-
ified using the CORINE land cover map  (European Environment
Agency, 2006) aggregated to 11 classes (Table 3). Within each class,
we first count the total number of valid observations per pixel and
the length of data gaps and then select the pixels with the highest
number of valid observations and the most regular distribution of
gaps (e.g. avoiding clumped − and therefore long − data gaps). For
this study, to qualify as template, the number of valid observations
should be greater than the 99th percentile of the valid observations
in a specific image tile and the variance in the length of data gaps
should be less than the 1st percentile. Amongst the candidates that
satisfy these two  rules (quantity of valid observations and distri-
bution of gaps), we exclude the most similar templates based on
the pair-wise Euclidean distance ensuring that at least 50% of the
pairs have a distance below the total mean distance of the overall
distance matrix.

The fifth step is the ‘template matching’. During this step we
compute the Euclidean distance between each template and each
pixel and then select the templates that best match the temporal
and spectral profile of each pixel. The Euclidean distance is cal-
culated considering all spectral bands and temporal dimensions
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