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A B S T R A C T

Investigators have examined how heat waves or incremental changes in temperature affect health outcomes, but
few have examined both simultaneously. We utilized distributed lag nonlinear models (DLNM) to explore
temperature associations and evaluate possible added heat wave effects on hospitalizations in 16 climate zones
throughout California from May through October 1999–2009. We define heat waves as a period when daily
mean temperatures were above the zone- and month-specific 95th percentile for at least two consecutive days.
DLNMs were used to estimate climate zone-specific non-linear temperature and heat wave effects, which were
then combined using random effects meta-analysis to produce an overall estimate for each. With higher tem-
peratures, admissions for acute renal failure, appendicitis, dehydration, ischemic stroke, mental health, non-
infectious enteritis, and primary diabetes were significantly increased, with added effects from heat waves
observed for acute renal failure and dehydration. Higher temperatures also predicted statistically significant
decreases in hypertension admissions, respiratory admissions, and respiratory diseases with secondary diagnoses
of diabetes, though heat waves independently predicted an added increase in risk for both respiratory types. Our
findings provide evidence that both heat wave and temperature exposures can exert effects independently.

1. Introduction

Associations of high temperatures or heat waves with mortality and
morbidity from a number of illnesses have been well-documented in
scientific literature (Astrom et al., 2011; Basu, 2009; Johnson et al.,
2005; Kravchenko et al., 2013). However, surveillance and media re-
porting of heat wave impacts have often focused on explicitly diagnosed
heat-related illnesses (HRI; e.g. heat stroke) and mortality. Making case
determinations regarding the direct or indirect role of heat relies on
professional judgement using both narrow heat illness definitions (e.g.
hyperthermia) and limited knowledge regarding the specific circum-
stances of the incident (Donoghue et al., 1997). Consequently, heat-
related health impacts are often underreported. For example, following
the 2006 heat wave in California, researchers estimated approximately
600 heat-related deaths using epidemiological methods, almost four
times greater than what was reported by the Coroner's office (Hoshiko
et al., 2010; Ostro et al., 2009). More intense, frequent, and longer heat
waves are predicted, both statewide and globally (Allen et al., 2012;

Gershunov et al., 2009; Gershunov and Guirguis, 2012; Meehl and
Tebaldi, 2004; Solomon et al., 2007), heightening the importance of
adequately defining health-threatening heat waves and identifying
impacted health outcomes so that appropriate preventative measures
can be implemented.

Existing heat wave definitions vary by temperature metrics,
thresholds, and duration (Anderson and Bell, 2011; D'Ippoliti et al.,
2010; Gasparrini and Armstrong, 2011; Hajat et al., 2006; Keellings and
Waylen, 2014; Kent et al., 2014; Smoyer, 1998), and no consensus
exists on which best predict morbidity. One reason is that thresholds of
concern may be different in milder climate regions or early in warm
seasons due to regional or temporal acclimatization (Baccini et al.,
2008; Gasparrini et al., 2016; Guirguis et al., 2014; Hajat et al., 2002;
Lee et al., 2014; Tobias et al., 2012; Xiao et al., 2015). Nonetheless, few
investigators have attempted to define heat waves based on timing in
the summer within a varying climate, using month-specific thresholds
(D'Ippoliti et al., 2010; Schifano et al., 2009). This method helps ac-
count for population acclimatization by defining region-specific heat
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waves that account for varying temperatures throughout the warm
season (Anderson and Bell, 2009).

Most studies of heat waves and morbidity have considered specific
major heat waves without adjusting for temperature (Kaiser et al.,
2007; Li et al., 2015; Weisskopf et al., 2002; Ye et al., 2011). Quanti-
fying the impact of heat waves in addition to temperature allows us to
specifically capture effects of prolonged days of heat after parsing out
the effects of high daily temperature, and allows for the identification of
the highest risk outcomes during long durations of high temperatures.
Additionally, some health impacts may be sensitive to high or even
moderate temperatures independent of duration (Gasparrini et al.,
2015; Gronlund et al., 2014; Yang et al., 2016) and merit vigilance
regardless of the presence of a heat wave. Identifying these different
relationships would benefit illness prevention efforts by allowing for
better targeting and implementation of extreme heat and heat wave
warnings towards at-risk populations, as well as enhancing the ability
to anticipate heat care utilization during such periods. While a few
studies have used this approach in studying morbidity outcomes
(Gronlund et al., 2014; Xu et al., 2014a), most investigations have fo-
cused on mortality (Anderson and Bell, 2009; Chen et al., 2015; Egondi
et al., 2015; Hajat et al., 2006; Zeng et al., 2014) which can differ from
morbidity due to the severity of mortality causes.

In this study, we explored different definitions of heat waves to
estimate their associations with hospitalizations across 16 climate zones
of California during the warm season from 1999 to 2009. Because of
California's diversity of population and climate zones, studying region-
specific heat waves is essential, after defining what constitutes a heat
wave. We examined temperature-hospitalization relationships, with
particular interest in the added effect of heat waves on these relation-
ships, using distributed lag non-linear models (DLNM) which allow for
examination of lagged and cumulative effects. We also considered the
possibility of confounding by air pollution and effect modification by
age or race/ethnicity group, as well as area differences in effect that
might arise due to acclimatization or other regional factors.

2. Materials and methods

2.1. Exposure

The study period spanned years 1999 through 2009, with focus on
the warm (May 1–October 31) season because of our interest in heat
waves and higher temperatures. Daily minimum and maximum tem-
peratures were derived from gridded data on a 12 km by 12 km grid
throughout California (Maurer et al., 2002). Because these were the
only metrics available, daily mean temperatures were estimated as the
average of the minimum and maximum values. The relative humidity
measurements were abstracted from the National Centers for Environ-
mental Prediction (NCEP) North American Regional Reanalysis data
(Mesinger et al., 2006), with gridded data available at a 32 km by
32 km spatial resolution. Exposure data was assigned to each zip code
tabulation area (ZCTA) and then aggregated into 16 climate zones
where each ZCTA was weighted based on its population size. Climate
zone boundaries were provided by the California Energy Commission
(CEC), which classified 16 areas based on weather, energy use, and
other climatic factors (California Energy Commission, 2015).

To test for potential confounding by air pollutants, we utilized data
for carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide
(SO2), ozone (O3), as well as particulate matter less than 2.5 µm in
aerodynamic diameter (PM2.5) provided by the California Air Resources
Board (California Air Resources Board, 2011). Gaseous pollutants were
measured as daily one-hour maxima, while PM2.5 is typically measured
every third or sixth day depending on the location and timing of the
year and provided as a 24-h average. Only climate zones with PM2.5

above a specific threshold of observations over the study period (25%
for climate zones 3, 4, 11, 15, and 16 and 50% for climate zones 6–10,
12, and 13) were included. For all pollutants, one monitor was chosen

for each climate zone based on completeness of data and population
coverage within 20 km based on population-weighted zip code cen-
troid.

2.2. Health-outcome data

We obtained data for all hospitalizations in California from the
Office of Statewide Health Planning and Development (OSHPD) Patient
Discharge Data (PDD) spanning 1999–2009. Only unscheduled hospi-
talizations at acute care facilities were included. Variables of interest
included zip code, date of hospital admission, day of the week, counts
for each health outcome category, age groups 0–5, 6–18, 19–64, and 65
years and older) and race/ethnicity (White non-Hispanic, Black non-
Hispanic, Asian non-Hispanic, and Hispanic). The following primary
diagnoses were evaluated, as listed in the International Classification of
Disease codes, 9th Revision, Clinical Modification: acute myocardial
infarction (MI) (410), acute renal failure (584), appendicitis (540–542),
cardiac dysrhythmias (427), cardiovascular disease (CVD) (390–459),
dehydration/volume depletion (276.5), diabetes (250), diverticulitis
(562), essential hypertension (401), heat illness (992), intestinal in-
fectious disease (1–9), ischemic heart disease (410–414), ischemic
stroke (433–436), mental health (290–319), non-infectious enteritis
(558) and all respiratory diseases (460–519). These outcomes were
chosen because prior studies had linked them or related outcomes to
temperature (Bunker et al., 2016; Li et al., 2015). We also examined
visits listing diabetes (250) as a secondary diagnosis for all respiratory
diseases and all CVD each as primary diagnoses, as diabetes has been
implicated in conferring susceptibility to heat-related morbidity
(Bunker et al., 2016; Schifano et al., 2009). In sensitivity analyses of
respiratory subgroups, we considered acute (460–466, 480–488) and
chronic (470–478, 490–519) diagnoses. Outcome data were aggregated
into daily counts for 16 climate zones to correspond with the heat wave
and temperature metrics. Repeat visits by the same individual were
counted as separate, unique visits due to an inability to differentiate
specific individuals in this dataset. For each outcome, we only included
climate zones that had at least 20 hospitalizations per year.

2.3. Model selection/data analysis

We created a number of heat wave definitions using the distribu-
tions for the mean, minimum and maximum temperature. For each
temperature variable, we calculated a 95th percentile cutoff specific to
each climate zone over the study period. We also devised month-spe-
cific 95th percentile cutoffs as a possible way to account for acclima-
tization. Periods of at least two consecutive days above these cutoffs
were identified, and days within these periods, exclusive of the first day
of the period, were designated as heat wave exposure days. All other
days, including the first day of the heat wave period, were designated
non-heat wave exposure days.

We applied time-series methods for analysis. DLNM utilizing gen-
eralized additive models (GAM) with a quasi-Poisson link function were
used to predict the climate zone-specific daily counts for hospitaliza-
tions at day t with (1) distinct cross-basis terms for the binary heat wave
indicator variable (Cb.HWt,l) and continuous temperature (Cb.tempt,l);
(2) a natural spline over the range of study dates for time trend (time);
(3) an indicator for day of the week (DOWt); and (4) a linear term for
relative humidity (RHt).
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The quasi-Poisson link function was used to account for over-dis-
persion in the data. Cross-basis terms for heat wave and temperature
modeled the daily exposures-response relationships using binary and
spline terms, respectively. Simultaneously, these cross-bases modeled
their lag relationships from 0 to 3 (l) using a natural spline with an
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