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A B S T R A C T

Many epidemiological studies have used proximity to sources as air pollution exposure assessment method.
However, proximity measures are not generally good surrogates because of their complex non-linear relation-
ship with exposures. Neuro-fuzzy inference systems (NFIS) can be used to map complex non-linear systems, but
its usefulness in exposure assessment has not been extensively explored. We present a novel approach for
exposure assessment using NFIS, where the inputs of the model were easily-obtainable proximity measures, and
the output was residential exposure to an air pollutant. We applied it to a case-study on NH3 pollution, and
compared health effects and exposures estimated from NFIS, with those obtained from emission-dispersion
models, and linear and non-linear regression proximity models, using 10-fold cross validation. The agreement
between emission-dispersion and NFIS exposures was high (Root-mean-square error (RMSE) =0.275,
correlation coefficient (r)=0.91) and resulted in similar health effect estimates. Linear models showed poor
performance (RMSE=0.527, r=0.59), while non-linear regression models resulted in heterocedasticity, non-
normality and clustered data. NFIS could be a useful tool for estimating individual air pollution exposures in
epidemiological studies on large populations, when emission-dispersion data are not available. The tradeoff
between simplicity and accuracy needs to be considered.

1. Introduction

Epidemiological studies often rely on exposure estimates to assess
the association between exposure levels and health outcomes and to
identify health risk factors. Health effect estimates and the conclusions
arisen from epidemiological studies are influenced by these exposure
data. It is therefore fundamental that epidemiological studies use
reliable exposure assessment methods.

Different exposure assessment approaches can be used to estimate
residential exposure to air pollutants. National routine monitoring
networks provide long-term, nationally consistent air quality data, that
can be used as a metric of exposure. However, these monitoring
stations are often set for regulatory purposes and placed in locations
that are not optimal for exposure assessment purposes (Özkaynak
et al., 2013). More importantly, monitoring stations are expensive and
hence very limited in number. As a consequence, exposure assessments
based on monitoring stations lack spatial resolution and cannot
provide accurate individual exposure estimates for pollutant concen-
trations that are spatially heterogeneous (Bell et al., 2011). Air
pollution emission-dispersion modeling overcomes this difficulty by

estimating pollutant concentrations at receptor sites based on emission
inventories and meteorological data, using a complex set of governing
equations describing the physical phenomena of emission, transport
and fate of air pollutants. Air quality models can provide high spatial
resolution, but they require complex physical models, precise informa-
tion on source emissions, meteorology and topography, and they are
costly and computationally demanding. Land-use regression models
(LUR) can also be used to predict pollution at any location. LUR also
has high input data requirements, since it utilizes the monitored levels
of the pollutant of interest as the dependent variable and variables such
as land cover, topography, and other geographic variables as the
independent variables in a multivariate regression model (Ryan
et al., 2007). Due to the high input data requirements of these methods,
many studies have used proximity models, i.e. simple geographical
features, such as distances to point sources or number of point sources
within certain distance to the residence; as a proxy for exposure
(Hodgson et al., 2007; Huang and Batterman, 2000; Vrijheid, 2000).
Proximity measures are reasonably ascertainable and easy-to-use data,
but it has been frequently discussed in the literature that using these
measures as a proxy for exposure (i.e. proximity models) is not an

http://dx.doi.org/10.1016/j.envres.2016.12.028
Received 10 October 2016; Received in revised form 24 November 2016; Accepted 26 December 2016

⁎ Corresponding author.
E-mail address: vbv@mmmi.sdu.dk (V. Blanes-Vidal).

Environmental Research 154 (2017) 196–203

0013-9351/ © 2017 Elsevier Inc. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00139351
http://www.elsevier.com/locate/envres
http://dx.doi.org/10.1016/j.envres.2016.12.028
http://dx.doi.org/10.1016/j.envres.2016.12.028
http://dx.doi.org/10.1016/j.envres.2016.12.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envres.2016.12.028&domain=pdf


accurate way of identifying exposed populations, since it can lead to
significant exposure misclassification when compared with exposures
estimated from atmospheric dispersion modeling and it may not
provide reliable health effects estimates (Ashworth et al., 2013;
Cantuaria et al., 2016; Cordioli et al., 2013; Hodgson et al., 2007;
Kibble and Harrison, 2005). Due to these risks, previous studies have
come to the conclusion that in order to obtain accurate and reliable
estimates of residential exposure, it is imperative to have precise data
on emission, meteorology and topography data and to use emission-
dispersion modeling or LUR (Hodgson et al., 2007; Özkaynak et al.,
2013).

Given the shortcomings of emission-dispersion modeling (i.e.
requires extensive input data) and methods based on proximity to
point sources (i.e. lack of accuracy), it would be interesting to develop
alternative methods able to estimate air pollution exposures at receptor
sites for large populations with high accuracy and spatial resolution
(similar to those obtained from emission-dispersion modeling ap-
proaches), but do not have high input data requirements. The final
goal of such exposure estimation method is prediction, which is
obtained by mapping a set of variables (i.e. easy-measurable input
variables, such as proximity measures) in input space to a response
variable (i.e. air pollution exposures estimates at receptor sites) in the
output space through a model. Mathematical approaches for develop-
ing these models must consider that the cause-effect relationships of
these parameters leading from air pollutant emission to individual
exposure, are complex, uncertain, and non-linear in nature (Zou et al.,
2016).

Fuzzy logic (i.e. the logic of fuzzy sets) is suitable for uncertain or
approximate reasoning, especially for complex non-linear systems with
a mathematical model that is difficult to derive. A fuzzy inference
system (FIS) can be defined as the nonlinear mapping of an input data
set to a scalar output data, using fuzzy logic (Mendel, 1995). Fuzzy logic
is based on fuzzy sets and fuzzy rules. Fuzzy set theory can be
conceptualized as a generalization of classical Aristotelic logic. In
classical logic, the membership of elements in a set is assessed in
binary terms (i.e. objects either belong to a set or do not belong to a
set). Therefore classical logic only permits propositions having a value
of truth or falsity. Fuzzy sets, unlike classical sets, are defined by
membership functions. A membership function assigns to each element
in the set under consideration (the universal space) a degree of
membership to the set, which is a value in the interval [0,1].
Therefore, an element can simultaneously belong to several subsets,
at least to a certain degree of membership. In fuzzy logic, the
description of how the FIS makes a decision regarding the output,
based on the inputs, is expressed by a collection of linguistic IF-THEN
statements called fuzzy rules.

Fuzzy inference systems have as a limitation that they do not have
the ability to learn from the data, and therefore, the successful
performance relies heavily on human knowledge derived from domain
experts who, based on their experience, define the shape of the
membership functions and define the fuzzy rules. Introducing artificial
neural network (ANN) data driven optimization techniques improves
the potentially inaccurate or incomplete information provided by the
experts. In a neuro-fuzzy inference system (NFIS), the system is trained
by means of a data-driven learning method derived from neural
network theory. Fuzzy logic and neuro-fuzzy inference systems are
well-established concepts in mathematics and engineering but its
usefulness in medicine, epidemiology, health risk assessment and
exposure assessment has not been extensively explored (Giubilato
et al., 2014; Godil et al., 2011; Massad et al., 2003; Milla dos Santos
et al., 2014; Vineis, 2008).

Neuro-fuzzy inference systems have been used in air pollution
studies to create air quality indexes using specific air pollutant
concentrations (e.g. PM2.5, PM10, O3, CO, NO2 and SO2) as input
variables (Olvera-García et al., 2016). Besides, ANN and NFIS have
been used to estimate air pollution concentrations in two main

applications. First, for air pollution time series forecasting, using as
input variables: previous concentrations of the air pollutant being
investigated, concentrations of other relevant air pollutants and
meteorological variables, at the location of interest (Dursun et al.,
2015; Morabito and Versaci, 2003; Zahedi et al., 2014). In relation to
air pollution forecasting, Ausati and Amanollahi (Ausati and
Amanollahi, 2016) recently used NFIS to predict PM2.5 based on
SO2, PM10, O3, PM2.5 on the previous day, average maximum tem-
perature and wind speed; and Mishra and Goyal (Mishra and Goyal,
2016) proposed an artificial intelligence based neuro-fuzzy model for
NO2 forecasting using as inputs: temperature, pressure, relative
humidity, wind speed, wind direction index, visibility and previous
day's NO2 concentrations (estimated from an emission-dispersion
model). Second, ANN and NFIS have also been used for building
spatially dense air pollution maps based on known air pollutant
concentrations at specific locations. Regarding spatial
estimations, Shahraiyni et al. (2015) used artificial neural networks
to estimate the hourly PM10 concentration at monitoring stations that
have been shut-down in Germany, based on PM10 measurements of
still–operating monitoring stations; while Wahid et al. (2013) esti-
mated the spatial distribution of daily O3 concentrations at the state of
New South Wales (Australia), by building a neural network model that
approximates the nonlinear relationship between NOx emission, am-
bient temperature, location coordinates and topography, considered as
the inputs, and the 8-h maximum average of O3 concentration as the
output. To sum up, previous NFIS models are able to successfully
estimate air pollution concentrations, under condition of possessing a
proper database of data, typically a series of air pollution and
meteorological variables. However, to our knowledge, no previous
study has aimed at using NFIS to estimate air pollutant concentration
from simple proximity measures (e.g. distance to sources).

In this study we investigated neuro-fuzzy inference systems as a
methodology to estimate residential exposures to air pollutants, using
simple proximity measures (i.e. number of point pollution sources
within certain distances to the residence and in the region), as sole
model inputs. We described this methodology, applied it to a case-
study and evaluated the accuracy of the neuro-fuzzy method for
exposure prediction. We further compared air pollution exposures
predicted by NFIS with those obtained from linear and non-linear
regression methods that use the same proximity measures as input
variables, as in NFIS. Finally, we evaluated the effect that using these
different exposure assessment methods (i.e. emission-dispersion mod-
els, linear and non-linear regression proximity models and NFIS
proximity models) may have on the health effect estimates.

2. Materials and methods

2.1. Fuzzy inference systems

The NFIS architecture can be described as a structure of six
different layers (Fig. 1), which represent the process from the model
inputs to the predicted output. In our study we used a Sugeno-type
inference system, where the functioning of each layer is as follows
(Abraham et al., 2002):

Layer 1 is the input layer. No computation is performed here, each
node in this layer only transmits the inputs to the next layer.

Layer 2 is the fuzzification layer. Fuzzification is a procedure
through which the input variables are turned into the degrees of
membership to given fuzzy sets or classes, as determined by member-
ship functions. The fuzzification layer contains information on the
membership functions of input variables, which can be any appropriate
parameterized function introduced in here. Typical membership func-
tions are triangular, trapezoidal, simple Gaussian curve, two-sided
composite of two different Gaussian curves and the generalized bell
membership function (Supplementary information). The outputs of
this layer are represented as μ x( )A jj l,

which is the degree of membership
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