ARTICLE IN PRESS Marine Pollution Bulletin xxx (xxxx) xxx-xxx ELSEVIER Contents lists available at ScienceDirect ### Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul #### Baseline Opportunistic sampling to quantify plastics in the diet of unfledged Black Legged Kittiwakes (*Rissa tridactyla*), Northern Fulmars (*Fulmarus glacialis*) and Great Cormorants (*Phalacrocorax carbo*) Heidi Acampora^{a,*}, Stephen Newton^b, Ian O'Connor^a - ^a Galway-Mayo Institute of Technology, Marine & Freshwater Research Centre, Dublin Rd, Galway, Ireland - ^b BirdWatch Ireland, Unit 20, Block D, Bullford Business Campus, Kilcoole, Co. Wicklow, Ireland #### ARTICLE INFO #### Keywords: Seabird chicks Plastic pollution Marine litter Regurgitate Ingestion #### ABSTRACT Seabirds can interact with marine litter, mainly by entanglement or ingestion. The ingestion of plastics can lead to starvation or physical damage to the digestive tract. For chicks, it could additionally lead to reduced growth, affecting survival and fledging. This study quantified the ingestion of plastics by seabird chicks via an opportunistic sampling strategy. When ringing is carried out at colonies, birds may spontaneously regurgitate their stomach contents due to the stress or as a defence mechanism. Regurgitates were collected from nestlings of three different species: Black-legged Kittiwake (*Rissa tridactyla*, n = 38), Northern Fulmar (*Fulmarus glacialis*, n = 14) and Great Cormorant (*Phalacrocorax carbo*, n = 28). Plastic was present in all species, with the highest frequency of occurrence (FO) in Northern Fulmar chicks (28.6%), followed by Black-legged Kittiwakes (7.9%) and Great Cormorants (7.1%). The observed load of plastics on chicks, which have not yet left the nest, highlights the pervasive nature of plastic pollution. Marine litter has been recognised as a threat to wildlife and the marine environment (Bergmann et al., 2015; Derraik, 2002; Gall and Thompson, 2015). Kühn et al. (2015) report that 557 species, including 50% of all seabird species, are affected by marine litter. Seabirds are affected by marine litter through two main ways: ingestion and entanglement. Ingestion can block an animal's digestive tract, cause ulcers or perforations, produce a false satiation feeling, causing the bird not to feed, leading to impairment or starvation (Derraik, 2002; Ryan, 1988a, 1988b). There are also possible effects originating from compounds either added to plastics during production processes or adsorbed by them when drifting at sea (Koelmans, 2015; Tanaka et al., 2015). Entanglement can cause injuries or trap animals, impairing their ability to search for food (Laist, 1997), or if used in nest construction, ensnare young and prevent them from fledging (Bond et al., 2012; Lavers et al., 2013). Ingestion of plastic debris has been widely reported globally for adult seabirds (Avery-Gomm et al., 2013; Gall and Thompson, 2015; Kühn et al., 2015; Provencher et al., 2016; Provencher et al., 2014; Roman et al., 2016; Van Franeker and Law, 2015), but there has been fewer reports in the peer-reviewed literature for chicks (Bond et al., 2010; Carey, 2011; Cousin et al., 2015; Rodríguez et al., 2012; Ryan, 1988a, 1988b), except for albatross chicks, which have high levels of plastic litter in their digestive tract and have been extensively studied (Sievert and Sileo, 1993; Sileo et al., 1990; Young et al., 2009). Chicks are not able to feed by themselves, so they receive their food from their parents, in many species via regurgitation. Chick survival can be dependent on a range of factors including: predation, thermal stress and, food availability. The fact that seabirds are long lived species, with delayed sexual maturity, that lay small clutch sizes compounds the potential impact that an additional threat, such as plastic litter could have on seabird populations. Dietary studies through the collection of expelled boluses and spontaneous regurgitation are minimally invasive, and yet can provide an insight into the presence/absence of plastic litter in 'healthy' seabirds, as opposed to beached birds and carcasses found in breeding colonies (Hammer et al., 2016; Lindborg et al., 2012). During the course of demographic research activities such as ringing, many birds spontaneously regurgitate stomach contents as a response to the stress of being handled or as a defence mechanism. Regurgitation does not always expel the entire stomach contents, sometimes permitting that only the upper stomach contents to be expelled (Barrett et al., 2007; Bond and Lavers, 2013). However, regurgitates provide an opportunity to sample the diet of seabirds in situ and alive, as opposed to laboratory experiments and the examination of carcasses. Understanding trends in E-mail address: heidi.acampora@research.gmit.ie (H. Acampora). http://dx.doi.org/10.1016/j.marpolbul.2017.04.016 Received 30 January 2017; Received in revised form 3 April 2017; Accepted 10 April 2017 0025-326X/ © 2017 Elsevier Ltd. All rights reserved. ^{*} Corresponding author. H. Acampora et al. Marine Pollution Bulletin xxx (xxxxx) xxx-xxx Table 1 Regurgitate sample description per species ordered by year of collection and location. | Species | Year | Regurgitates (n) | Location | |---|------|------------------|--| | Great Cormorant (Phalacrocorax carbo) | 2011 | 25 | St. Patrick's, Co.
Donegal & Great Saltee, Co.
Wexford | | | 2012 | 3 | Ireland's Eye, Co. Dublin | | Great Cormorant total | | 28 | | | Black-legged Kittiwake | 2013 | 17 | Rockabill, Co. Dublin | | (Rissa tridactyla) | 2015 | 21 | Rockabill, Co. Dublin | | Black-legged Kittiwake total | | 38 | | | Northern Fulmar
(Fulmarus glacialis) | 2015 | 14 | Great Saltee, Co. Wexford | | Northern Fulmar total | | 14 | | | Sample total | | 80 | | ingestion of plastic litter by different species has the potential to inform policy and generate mitigation measures. This study aimed to provide baseline data for the ingestion of plastics by seabird chicks in Ireland. Spontaneous regurgitates were collected at four different breeding colonies during ringing and demographic colony work, from three different species: Black-Legged Kittiwake (Rissa tridactyla), Northern Fulmar (Fulmarus glacialis) and Great Cormorant (Phalacrocorax carbo). Through the examination of chick regurgitates, it is possible to obtain insight into the diet of seabird chicks and how they interact with plastic pollution and, consequently into the same interactions in breeding adults when considering seabird populations in Ireland as a whole. Regurgitate samples were collected from 80 individuals at four different colonies in the years 2011, 2012, 2013 & 2015 (Table 1) via opportunistic sampling while chicks were ringed in the nest during colony work. Samples were collected in plastic bags and frozen until further analysis. After thawing overnight, each sample was washed through a 1 mm mesh sieve and every solid item retained in petri dishes. Solid contents were air dried overnight and examined under a Stereo microscope (MicrosAustria, $0.6 \times -5 \times$). They were separated into food and non-food categories according to Van Franeker et al. (2003). Litter items were weighed to the nearest 0.0001 g and food items were identified and counted. Statistical analysis was carried out using R studio version 0.98.1102 (2009–2014, R Studio, Inc.). Data were non-normal, skewed and zero-inflated. For that reason, non-parametric tests such as Mann-Whitney and Kruskal-Wallis were used. The variables 'Litter Presence' and 'Litter Mass' were tested against relevant variables such as 'Food Presence' and the main food categories using a Mann-Whitney-Wilcoxon Test. A Kruskal-Wallis test was used to investigate if the variables 'Litter Presence' and 'Litter Mass' were influenced by the variable 'Species'. The present study analysed 80 individual regurgitates from chicks of 3 different species. Samples were collected from 2011 to 2015 at 4 different breeding colonies along the coast of Ireland, described in Table 1. Due to the opportunistic nature of this sampling, sample sizes were limited and spatial and temporal differences were not taken into account in this particular work. Instead, all colonies and years were considered together in order to improve the power of statistical analysis. From all regurgitates analysed (n = 80), 11.3% (n = 9) contained plastic litter (Fig. 1). Regurgitates from all 3 studied species contained plastic litter, from 3 different colonies: Black-legged Kittiwakes (n = 3), Great Cormorants (n = 2) and Northern Fulmars (n = 4). Plastic categories were fragments (44.4%), sheet (33.3%) and foam (22.2%). Two individuals (1 Black-legged Kittiwake and 1 Great Cormorant) contained also non-plastic litter (fragments of paraffin wax). Plastic litter ingestion was higher in Northern Fulmar chicks, with a 28.6% frequency of occurrence (FO), an average mass of 0.0129 g (Range: 0–0.1043 g. SD \pm 0.0317) and an average number of particles of 0.50 (Range: 0–3. SD \pm 0.90); followed by Black-legged Kittiwakes **Fig. 1.** Sample containing plastic litter (type: sheet) found in regurgitate from a Blacklegged Kittiwake chick. Rockabill, Co. Dublin, 2013. with 7.9% FO, 0.0001 g average plastic mass (Range: 0–0.0045 g. SD \pm 0.0007) and 0.08 average number of particles (Range: 0–1. SD \pm 0.26); and lastly, Great Cormorants with 7.1% FO, an average mass of 0.0123 g (Range: 0–0.3450 g. SD \pm 0.0640), average number of particles of 0.21 (Range: 0–5. SD \pm 0.93) (Table 2). When testing if species had any effect on the mass of plastic litter, we found no significant differences among all three study species (p=0.075). No significant difference was found when testing if food presence, or any of selected food items had an influence on the presence of plastic litter. This study aimed to investigate ingestion of plastics by chicks of three species of seabird in Ireland and set baseline data by using an opportunistic sampling method (spontaneous regurgitation). Our results have shown that chicks are ingesting litter, mainly plastics. These birds have not left the nest and yet, have been contaminated by the ingestion of anthropogenic debris fed to them via parents. Our results show that the frequency of plastic occurrence in chick regurgitates of Northern Fulmars was higher (28.6%) than Black-legged Kittiwakes (7.9%) and Great Cormorants (7.1%). Ingestion of plastics has been connected to foraging strategy by various studies (Azzarello and Van Vleet, 1987; Ryan, 1988a, 1988b; Shephard et al., 2015). Surface seizing birds would be more likely to come across positively buoyant plastics (Moser and Lee, 1992). Birds with a generalist diet are more prone to mistaking plastics for food items (Moser and Lee, 1992). Northern Fulmars are both surface feeders and generalist feeders (Burg et al., 2003; Mallory, 2006), with our results thus reinforcing such connection between plastic ingestion and feeding strategy and diet. Previous authors have reported that young birds have more plastics in their stomachs than adults (Acampora et al., 2014; Carey, 2011). This could be explained by parental delivery when feeding chicks, or perhaps because young birds could be more naïve when feeding by themselves. In the case of the birds in this study, the former would apply as samples were collected from chicks, which were still completely dependent on parents for their food requirements. When comparing prevalence of plastic litter in adult birds from the same region, Acampora et al. (2016) found a higher prevalence (93%) in corpses of Northern Fulmars, with an equal sample size (n = 14) to the chick regurgitates from this study. The same was true for stomach contents of Black-legged Kittiwakes, with a 50% prevalence, but in a smaller sample size (n = 4). Previous work on Great Cormorants in Ireland found a 3.2% plastic prevalence in boluses (Acampora et al., 2017). When using this type of dietary analysis, comparison between species should be done with caution, taking species' biology regarding ## Download English Version: # https://daneshyari.com/en/article/5757419 Download Persian Version: https://daneshyari.com/article/5757419 Daneshyari.com