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(MBRs) are still actively investigated in the field of wastewater treatment. Notably, membrane fouling
remains the most challenging issue in MBR operation and attracts considerable attention in MBR studies.
In this review, we summarized the updated information on foulants composition and characteristics in
MBRs, which greatly improves our understanding of fouling mechanisms. Furthermore, the emerging
fouling control strategies (e.g., mechanically assisted aeration scouring, in-situ chemical cleaning,
enzymatic and bacterial degradation of foulants, electrically assisted fouling mitigation, and
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Membrane fouling nanomaterial-based membranes) are comprehensively reviewed. As a result, it is found that the
In-situ fouling control fundamental understanding of dynamic changes in membrane foulants during a long-term operation is
Wastewater treatment essential for the development and implementation of fouling control methods. Recently developed

strategies for membrane fouling control denoted that the improvement of membrane performance is not
our ultimate and only goal, less energy consumption and more green/sustainable fouling control ways
are more promising to be developed and thus applied in the future. Overall, such a literature review not
only demonstrates current challenges and research needs for scientists working in the area of MBR
technologies, but also can provide more useful recommendations for industrial communities based on
the related application cases.
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1. Introduction

MBRs are a compact technology that combines an activated
sludge process and membrane filtration for wastewater treatment
and recycling. MBRs could achieve high nutrient removal efficiency
and complete biomass retention without a secondary clarifier. In
the past decades, such unique advantages of MBRs have caused this
technology to be of increasing interest for practitioners (Xiao et al.,
2014). The MBR market in China has been increasing significantly.
For instance, the total treatment capacity of large-scale MBRs
(>10,000 m> d~ 1) increased from 1.0 to 7.5 million m> d~! between
2010 and 2015 in China (Xiao et al., 2014), and this number is ex-
pected to increase to ca. 10.0 million m®-d~! by 2017. In the coming
years, a number of large-scale MBR plants will be installed soon in
China. For example, two MBR plants with a treatment capacity of
0.23 and 0.6 million m3-d~! will be installed in Beijing. In addition,
four conventional wastewater treatment plants in Chengdu will be

retrofitted using MBR processes, with a total treatment capacity of
0.75 million m> d~ In recent years, Beijing Origin Water has been
the largest membrane supplier in China, with a market share of
about 70%. The rapid increasing rate of MBR market in China is
mainly promoted by the following: the improved MBR technology,
the accumulation of operating experience on MBR plants and
particularly the requirement of high-quality treated wastewater by
the local government.

In fact, the annual growth rate of MBRs in the global market was
assessed to be ca. 15% by a number of research reports (Judd, 2016).
In addition to the wide application in China, large-scale MBR plants
are also adopted in U.S.A. and Europe Union, as indicted in Fig. 1
(data from http://www.thembrsite.com/). In addition, we noted
that the treatment capacity of most MBR plants constructed before
2010 were smaller than 0.1 million m? d~'; however, much larger
MBR plants were or will be constructed in the world since 2010.
Two MBR plants with treatment capacity exceeding 0.2 million
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