Accepted Manuscript

The acid soluble extracellular polymeric substance of aerobic granular sludge dominated by *Defluviicoccus* sp.

M. Pronk, T.R. Neu, M.C.M. van Loosdrecht, Y.M. Lin

PII: S0043-1354(17)30432-3

DOI: 10.1016/j.watres.2017.05.068

Reference: WR 12947

To appear in: Water Research

Received Date: 17 January 2017

Revised Date: 28 May 2017 Accepted Date: 29 May 2017

Please cite this article as: Pronk, M., Neu, T.R., van Loosdrecht, M.C.M., Lin, Y.M., The acid soluble extracellular polymeric substance of aerobic granular sludge dominated by *Defluviicoccus* sp., *Water Research* (2017), doi: 10.1016/j.watres.2017.05.068.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

- The acid soluble extracellular polymeric substance of aerobic
- granular sludge dominated by *Defluviicoccus* sp.
- 3 M. Pronk¹, T. R. Neu², M. C.M. van Loosdrecht¹, Y. M. Lin¹
- ¹ Department of Biotechnology, Julianalaan 67, 2628BC, Delft, the Netherlands, M.Pronk@tudelft.nl,
- 5 M.C.M.vanLoosdrecht@tudelft.nl, Yuemei.Lin@tudelft.nl
- 6 ² Microbiology of Interfaces, Department of River Ecology, Helmholtz Centre for Environmental
- 7 Research UFZ, Magdeburg, Germany
- 8 **Keywords:** Defluviicoccus; aerobic granular sludge; extracellular polymeric substances; biofilm; EPS
- 9 extraction

10 **Abstract**

11 A new acid soluble extracellular polymeric substance (acid soluble EPS) was extracted from an acetate 12 fed aerobic granular sludge reactor operated at 35 °C. Acid soluble EPS dominated granules exhibited 13 a remarkable and distinctive tangled tubular morphology. These granules are dominated by 14 Defluviicoccus Cluster II organisms. Acetic acid instead of the usually required alkaline extraction 15 medium was needed to dissolve the granules and solubilise the polymeric matrix. The extracted acid soluble EPS was analysed and identified using various instrumental analysis including ¹H and ¹³C 16 17 Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy and Raman spectroscopy. In 18 addition, the glycoconjugates were characterized by fluorescence lectin-binding analysis. The acid 19 soluble EPS is α -(1 \rightarrow 4) linked polysaccharide, containing both glucose and galactose as monomers. 20 There are -OCH₃ groups connected to the glucose monomer. Transmission and scanning electron 21 microscopy (TEM, SEM) as well as confocal laser scanning microscopy (CLSM) showed that the acid 22 soluble EPS was present as a tightly bound capsular EPS around bacterial cells ordered into a sarcinae-23 like growth pattern. The special granule morphology is decided by the acid soluble EPS produced by Defluviicoccus Cluster II organisms. This work shows that no single one method can be used to extract 24

Download English Version:

https://daneshyari.com/en/article/5759378

Download Persian Version:

https://daneshyari.com/article/5759378

<u>Daneshyari.com</u>