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a b s t r a c t

Chlorine disinfection of biologically treated wastewater is practiced in many locations prior to envi-
ronmental discharge or beneficial reuse. The effectiveness of chlorine disinfection processes may be
influenced by several factors, such as pH, temperature, ionic strength, organic carbon concentration, and
suspended solids. We investigated the use of Bayesian multilayer perceptron (BMLP) models as efficient
and practical tools for compiling and analysing free chlorine and monochloramine virus disinfection
performance as a multivariate problem. Corresponding to their relative susceptibility, Adenovirus 2 was
used to assess disinfection by monochloramine and Coxsackievirus B5 was used for free chlorine. A BMLP
model was constructed to relate key disinfection conditions (CT, pH, turbidity) to observed Log Reduction
Values (LRVs) for these viruses at constant temperature. The models proved to be valuable for incor-
porating uncertainty in the chlor(am)ination performance estimation and interpolating between oper-
ating conditions. Various types of queries could be performed with this model including the
identification of target CT for a particular combination of LRV, pH and turbidity. Similarly, it was possible
to derive achievable LRVs for combinations of CT, pH and turbidity. These queries yielded probability
density functions for the target variable reflecting the uncertainty in the model parameters and vari-
ability of the input variables. The disinfection efficacy was greatly impacted by pH and to a lesser extent
by turbidity for both types of disinfections. Non-linear relationships were observed between pH and
target CT, and turbidity and target CT, with compound effects on target CT also evidenced. This work
demonstrated that the use of BMLP models had considerable ability to improve the resolution and un-
derstanding of the multivariate relationships between operational parameters and disinfection outcomes
for wastewater treatment.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Disinfection dose requirements for water and wastewater
treatment are conventionally expressed as the product of disin-
fectant concentration and contact time (CT), required to achieve a
predetermined reduction in microbial numbers. Achievement of
target CT values is dependent uponmeeting various factors for each
pathogen type, including pH, temperature, disinfectant concen-
tration, ionic strength, and suspended particles (Jensen et al., 1980;
LeChevallier and Au, 2004). Consequently, assigning log reduction

value (LRV) credits depends on optimising such variables as well as
ensuring the primary CT product.

Previous work has sought to establish CT values necessary to
achieve LRVs for various pathogens in biologically treated (acti-
vated sludge) municipal wastewater (Keegan et al., 2012). The
products of that research included a number of linear models and
tables which related target CTs to various pH and turbidity com-
binations (DOH, 2013). This approach to deriving and representing
CT-LRV relationships is in line with international best practice for
defining the disinfection CT requirements for drinking water
(USEPA, 2003). However, as the number of disinfection controlling
factors increases, interpolating values between experimental data
points and communicating the information in tabular form or as
linear models becomes increasingly problematic. Further, the
increasing popularity of Quantitative Microbial Risk Assessment
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(US-EPA and USDA/FSIS, 2012) means that in future, LRV point es-
timates may not be sufficient, and measures of model uncertainty
and variability will be needed.

Bayesian belief networks (BBNs) offer an alternative approach
for relating chlorination LRVs to CT and wastewater quality pa-
rameters and incorporate parameter uncertainty and variability.
They also offer a convenient means for performing scenario
exploration and inference, and hence prediction of disinfection
performance under diverse conditions. Continuous BBNs are
models which involve the use of continuous variables without the
need for discretisation. A BBN's structure is defined by directional
connections, known as ‘arcs’, which specify the dependence and
conditional independence assumptions i.e. relationships, between
random variables, which in BBNs are termed ‘nodes’. These in-
terdependencies in turn determine what information is required to
specify the joint probability distribution among the random vari-
ables of a network. Through the directed acyclic graph structure,
BBNs reduce the quantity of information required to define a joint
probability distribution (Korb and Nicholson, 2011).

To facilitate interpolation and CT estimation and prediction, in
this study we investigated the use of Bayesian multilayer percep-
tron (BMLP) models to derive continuous relationships between
virus LRV, pH, turbidity and CT, and perform interpolation consid-
ering uncertainty in the model parameters. The Bayesian integra-
tion within the BMLP model transforms this model into a BBN,
introducing features such as stochastic representation of the pa-
rameters and predictions, as well as computation of queries on
target variables given a set of observations. A multilayer perceptron
(MLP) model is a type of neural network composed of layers of
neurons (elements that generate a transformation of the inputs)
with an input layer, at least one hidden layer, and an output layer
(Priddy and Keller, 2005). In MLP models the inputs of the neurons
in one layer come from the outputs of neurons in a previous layer.
Neurons in one layer are connected to the previous layer through
weighted connections. These models can solve non-linear prob-
lems and perform prediction with high accuracy in multivariate
settings.

In this studywe assessed the application of a continuous BBN for
estimating chlorination and chloramination LRVs for human virus
removal during wastewater treatment, while accounting for the
influence of pH, turbidity and CT variance. The broader aim of the
study was to investigate the utility of BBNs for quantifying the
effectiveness of chlorination of treatedwastewater in amultivariate
context and to present a simple and practical tool for interpolation
of CT values and incorporation of uncertainty and variability.

2. Materials and methods

2.1. Data extraction and model construction

Chlorine disinfection data were obtained from a previously
published project report of bench-scale batch experiments using
secondary treated wastewater from the Bolivar Wastewater Treat-
ment Plant in Adelaide, South Australia (Keegan et al., 2012). This
wastewater was seeded with two viruses, Coxsackievirus B5 for
estimating free chlorine LRVs, and Adenovirus 2 for estimating
monochloramine LRVs. These viruses were selected since they are
known to exhibit high resistance to chlorine and monochloramine
inactivation respectively (Liu et al., 1971; Payment et al., 1985). Two
parameters, pH and turbidity, were varied to determine CT values
for virus inactivation under a range of conditions.

Inactivation experiments were conducted at pH 7.0, 8.0 and 9.0,
and at three turbidity values (2, 5, 20 NTU), at a constant low
(conservative) temperature of 10 �C. Both viruses were seeded at
concentrations of ca 105 pfu/mL to allow measurement of up to at

least 4 logs inactivation. The datasets produced by Keegan et al.
(2012) consisted of 226 records for Adenovirus and 154 records
for Coxsackievirus. CT values were calculated from the integrals
(areas under the curves) of residual free and combined chlorine
concentrations vs. sample contact time. Unlike the original study, in
the present analysis the disinfection conditions and corresponding
LRV data were not obtained from fitted linear models, but by using
the raw replicated LRV measurements obtained in that study. The
aim for Keegan et al. (2012) was to construct CT tables for specific
whole-number LRV values (1, 2, 3 and 4) in line with conventional
past practice (USEPA, 2003). In the work presented here, we
describe the construction of a BBN, which can produce a target CT
value for any combination of input variables.

Prior to analysis, the raw data (Supplementary Material) were
extracted and arranged in a table (.CSV file) with columns repre-
senting variables and rows presenting the experimental cases. This
arrangement was used to facilitate importation to R programming
(R-project 2014) environment and BMLP model construction. The
process of model construction and parameter definition was con-
ducted in R using Jags through the freely available R2jags package
(Plummer, 2013).

The two overall structurally identical but parametrically
different models, one for each virus, represented the conventional
procedure followed by the US Environment Protection Agency
(USEPA, 2003). The models were constructed considering three
continuous variables, target LRV, pH and turbidity as predictors of
target CT. The BBN model is represented in Fig. 1, which shows the
choice of distributions for each identified node using Jags nomen-
clature. Explanation of each variable in the model is provided in
Table 1.

Other water quality parameters may also affect chlorination
LRV. However, such variables were controlled throughout these
experiments by the use of the same biologically treated wastewater
matrix in all experiments. The model thus assumes that target LRV,
pH and turbidity are conditionally dependent given target CT. This
means that without knowing the value of the target CT, a modifi-
cation to any of these three nodes will not produce any change to
the other two.

A BMLP model was employed to capture the relationships be-
tween the variables. BMLP model use enabled consideration of pH
and turbidity as continuous variables and therefore facilitated
interpolation of values intermediate with the selected experi-
mental settings. In this model, the error estimates in the target CT
were assumed normally distributed. Normal distribution was also
preferred due to its simplicity. This assumption has been previously
used to derive confidence intervals in the predicted outcomes of
multilayer perceptron (Chryssolouris et al., 1996; He and Li, 2011).
That is

CT � N
�
m; s2

�
(1)

where m is the predicted dependant value (target CT) as a function
of the target LRV, turbidity and pH, and s is the standard deviation
of the model errors. Unlike the conventional neural network
approach, the BMLP model considers uncertainty in the model
parameters which introduces an additional source of uncertainty
for the CT value estimation. The resulting model is presented in
section 2.3. Inactivation ratio (IR) and actual LRV (LRV.act) are
variables which were computed from the outcomes of stochastic
variables using Eqs. (2) and (3) respectively (USEPA, 2003).

IR ¼ CT:obs
CT:target

(2)
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