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a b s t r a c t 

Genetic oscillators are present in the cells of many organisms and control several biological processes. 

The common feature of such oscillators is the presence of a protein which represses the transcription of 

its own gene. Recently, it has been shown that for many genes transcription is not a continuous process, 

but that it proceeds in bursts. We study here the relationship between bursty transcription and the ro- 

bustness of protein oscillations. We concentrate on the temporal profile of mRNA production by studying 

regimes where this profile changes but the amount of mRNA produced is kept fixed. For systems with 

different degrees of cooperativity we show that in general bursts are associated with more robust os- 

cillations, but when they are too short and intense they can have the opposite effect. In other words, 

we show that, in terms of the regularity of the oscillations generated, there is an optimal value for the 

intensity of the bursts. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Given the relatively low copy number of molecules involved, 

stochasticity usually plays an important role in the cell cycle. Be- 

cause only one or two copies of each gene are present in a cell, 

the production of messenger mRNA (also called gene expression) 

is a process where stochastic effects are particularly relevant ( Raj 

and van Oudenaarden, 2008 ). Experimental studies carried out on 

several organisms, ranging from yeast ( Becskei et al., 2005 ) and E. 

coli ( Elowitz et al., 2002 ) to mammals ( Raj et al., 2006; Suter et al., 

2011 ), have found that the number of mRNA molecules presents 

large variations from cell to cell. Moreover, it has been shown that 

in general gene expression proceeds in short but intense bursts fol- 

lowed by relatively long periods during which the gene is ‘silent’. 

However, it is not yet clear whether this bursty transcriptional dy- 

namics is governed by processes acting on the whole genome or 

whether these processes are gene-specific ( Sanchez and Golding, 

2013 ). 
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The first question that arises is what can be the benefits (if 

any) of having large levels of noise in gene expression ( Raj and 

van Oudenaarden, 2008 ). It has been shown that stochastic ex- 

pression of a very specific gene is necessary for the develop- 

ment of the retinal mosaic that is so characteristic of the fruit fly 

(Drosophila) ( Wernet et al., 2006 ). One early example of mathe- 

matical modelling has suggested that stochastic gene expression 

can also underlie the phenotypic variations that are observed in 

some colonies of both eukaryotic and prokaryotic cells ( McAdams 

and Arkin, 1997 ). In turn, other mathematical models ( Kussell and 

Leibler, 2005 ) have shown that such phenotypic variability could 

confer an adaptive advantage in fluctuating environments. This was 

later confirmed by experiments with yeast strains ( Acar et al., 

2008 ). 

Noise in gene expression induces large fluctuations in the abun- 

dances of the proteins encoded. For most proteins, however, there 

is a well defined steady state about which this fluctuation occurs. 

But there are some proteins whose abundance is known to have 

a cyclical variation throughout the day. The best example are the 

proteins involved in the circadian clock ( Panda et al., 2002 ), but 

there are other proteins whose abundance oscillates with shorter, 

ultradian, periods (see e.g. Bar-Or et al., 20 0 0 ). The basic mecha- 
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nism of these oscillators is a feedback loop involving one or more 

proteins that repress the transcription of their own genes. Bursty 

transcription seems to be the dominant form of gene expression 

(at least for humans ( Dar et al., 2012 )) and it has recently been 

shown that this may also be the case for circadian genes ( Ono 

et al., 2015; Suter et al., 2011 ). 

One important difference between circadian and non circadian 

genes is that in the former the bursts in transcription can be 

caused by the very protein that the gene encodes. The relation- 

ship between protein abundance and transcriptional bursting is 

thus much less straightforward. The circadian clock is composed 

of many cellular oscillators, and it controls many behaviours. As 

a consequence, the cellular clocks should be as accurate as possi- 

ble. It is then natural to ask what is the relationship between the 

fundamental stochasticity of transcriptional bursting and the reg- 

ularity of protein oscillations and, moreover, whether it imposes 

any fundamental limit on these oscillations. These are the ques- 

tions that we address in this paper. 

We study the stochastic version of a simple genetic oscillator 

with one feedback loop for a protein that can pass through two 

different states. In order to study the effect of cooperativity in 

the repression of the gene, we consider systems with three differ- 

ent degrees of cooperativity. In Section 2 we present the stochas- 

tic model and the deterministic equations associated with it. In 

Section 3 we give a quantification of the quality of oscillations and 

relate it to the amount of bursting. Section 4 provides a simpli- 

fied theoretical treatment, for a better understanding of the results 

given in the previous section. In the last section we summarize and 

discuss our main results. 

2. Model of a genetic oscillator 

We consider a genetic oscillator composed by a protein, its 

messenger RNA and the gene that expresses it. We assume that, 

when it is not being repressed, the gene is in the active state 

(noted as D 0 ). In other words, we assume that the gene is always 

associated with its activator. This models the fact that, in some 

circadian oscillators, the activator of the gene is constitutively ex- 

pressed in the cell ( Houl et al., 2006 ). When active, the gene ‘pro- 

duces’ mRNA ( M ) at a rate k 1 . We assume that the protein passes 

through two states before being degraded. Translation takes place 

at a rate k 3 , generating the first state of the protein ( P 1 ). This is 

then converted into the second state of the protein ( P 2 ) at a rate 

k 4 . This models the phosphorylations that circadian proteins are 

known to undergo ( Panda et al., 2002 ), or its entrance to the nu- 

cleus. When in the second state, the protein closes the feedback 

loop by repressing the activator, thus turning off the gene ( R ). 

In most deterministic circadian models it is assumed that there 

is some degree of cooperativity in the repression of the activator 

by P 2 ( Goldbeter, 1995 ). This is usually modelled by introducing a 

Hill term in the differential equation for M . In our stochastic model 

cooperativity is enforced by assuming that n copy molecules of P 2 
are needed to repress the activator. Thus, the gene passes through 

n different states ( D i , i = 0 , . . . , n − 1 ) before being completely re- 

pressed. For simplicity we assume that the rate of production of 

mRNA is the same in all active states. In this paper we have stud- 

ied the cases of n = 1 (no cooperativity), n = 2 , and n = 3 . In the 

following all the equations will be written for the case n = 3 but 

the modifications necessary for the other cases are straightforward. 

We have also assumed that the degradation of the protein is 

mediated by an enzyme ( E ), whose abundance is assumed to be 

constitutive and given by E 0 . The protein and the enzyme form a 

complex C which degrades the protein at rate k 6 , thus freeing a 

copy of the enzyme. This is a gross simplification of the complex 

degradation paths of a protein, but at least it allows us to model 

the saturation of those paths. Furthermore, it has been shown that 

degradation terms of this form are in many cases necessary to have 

oscillations in a dynamical system ( Kurosawa and Iwasa, 2002 ). For 

simplicity, and also because the small copy number of mRNA is 

unlikely to saturate its degradation paths, we have assumed that 

mRNA is degraded at a fixed rate k 2 . 

For n = 3 , the reactions that take place in our stochastic model 

are: 

D 0 
k 1 → D 0 + M, 

D 1 
k 1 → D 1 + M, 

D 2 
k 1 → D 2 + M, 

M 

k 2 → ∅ , 
M 

k 3 → M + P 1 , 

P 1 
k 4 → P 2 , 

P 2 + E 
k 5 �

k −5 

C 
k 6 → E, 

D 0 + P 2 
k 7 �

k −7 

D 1 , 

D 1 + P 2 
k 8 �

k −8 

D 2 , 

D 2 + P 2 
k of f 

�
k on 

R. 

To obtain the system for n = 2 the reactions producing D 2 are 

eliminated and D 2 is replaced by D 1 . A similar modification re- 

garding D 1 must be performed to obtain the system for n = 1 . In 

the following the expressions will be given for the case n = 3 , 

unless otherwise noted. The generalizations for lower values of 

cooperativity are straightforward. The simulations for this system 

were performed using the Gillespie algorithm ( Gillespie, 1976 ). We 

tested four different parameter sets for each value of n . 

The evolution of the averages over the stochasticity is given by 

the following set of equations: 

˙ D 0 = −k 7 D 0 P 2 + k −7 D 1 , 

˙ D 1 = k 7 D 0 P 2 − k −7 D 1 − k 8 D 1 P 2 + k −8 D 2 , 

˙ D 2 = k 8 D 1 P 2 − k −8 D 2 − k of f D 2 P 2 + k on R, 

˙ M = k 1 (D 0 + D 1 + D 2 ) − k 2 M, 

˙ P 1 = k 3 M − k 4 P 1 , 

˙ P 2 = k 4 P 1 − k 5 P 2 E + k −5 C − k 7 D 0 P 2 + k −7 D 1 + 

−k 8 D 1 P 2 + k −8 D 2 − k of f D 2 P 2 + k on R, 

˙ E = −k 5 P 2 E + k −5 C + k 6 C, 

˙ C = k 5 P 2 E − k −5 C − k 6 C, 

˙ R = k of f D 2 P 2 − k on R, (1) 

with the initial condition at t = 0 , 

(D 0 , D 1 , D 2 , M, P 1 , P 2 , E, C, R ) = (D, 0 , 0 , 0 , 0 , 0 , E 0 , 0 , 0) . (2) 

All the variables in these equations represent volumetric concen- 

trations. The fact that the amount of enzyme and DNA remain 

constant induces the constraints E 0 = E(t) + C(t) and D = D 0 (t) + 

D 1 (t) + D 2 (t) + R (t) . In each cell there are only one or two copies 

of each gene but, for the sake of simplicity, we will assume in the 

following that D = 1 . Notice that this forces us to assume that the 

unit volume used in the volumetric concentrations is the volume 

of the whole cell. 

It can be shown that the system given by Eqs. (1) has always 

a single fixed point (and the same happens when the degree of 
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