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a b s t r a c t 

The classical models of evolution have been developed to incorporate structured populations using evolu- 

tionary graph theory and, more recently, a new framework has been developed to allow for more flexible 

population structures which potentially change through time and can accommodate multiplayer games 

with variable group sizes. In this paper we extend this work in three key ways. Firstly by developing a 

complete set of evolutionary dynamics so that the range of dynamic processes used in classical evolu- 

tionary graph theory can be applied. Secondly, by building upon previous models to allow for a general 

subpopulation structure, where all subpopulation members have a common movement distribution. Sub- 

populations can have varying levels of stability, represented by the proportion of interactions occurring 

between subpopulation members; in our representation of the population all subpopulation members are 

represented by a single vertex. In conjunction with this we extend the important concept of temperature 

(the temperature of a vertex is the sum of all the weights coming into that vertex; generally, the higher 

the temperature, the higher the rate of turnover of individuals at a vertex). Finally, we have used these 

new developments to consider the evolution of cooperation in a class of populations which possess this 

subpopulation structure using a multiplayer public goods game. We show that cooperation can evolve 

providing that subpopulations are sufficiently stable, with the smaller the subpopulations the easier it is 

for cooperation to evolve. We introduce a new concept of temperature, namely “subgroup temperature”, 

which can be used to explain our results. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Evolutionary game theory has proved to be a very successful 

way of modelling the evolution of, and behaviour within, popu- 

lations. The classical models mainly focused on well-mixed pop- 

ulations playing two player games ( Maynard Smith, 1982; May- 

nard Smith and Price, 1973 ), or alternatively playing games against 

the entire population ( Maynard Smith, 1982 ). Simple models such 

as the Hawk-Dove game ( Maynard Smith, 1974 ) and the sex ratio 

game ( Hamilton, 1967 ) have been used to explain important bio- 

logical phenomena. 

These models were developed to consider finite populations ex- 

plicitly ( Nowak, 2006a , Chapters 6–9) (although see Moran, 1958; 

1962 for important earlier non-game theoretic work) and struc- 

tured populations using the now widespread methodology of evo- 

lutionary graph theory originated in Lieberman et al. (2005) (see 
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also Antal and Scheuring, 2006; Broom and Rychtář, 2008; Ma- 

ciejewski and Puleo, 2014; Voorhees and Murray, 2013 , and Allen 

and Nowak (2014) ; Shakarian et al. (2012) for reviews). Such pop- 

ulation structures can have a profound effect on the result of the 

evolutionary process even when individuals have a fixed fitness 

( Lieberman et al., 2005; Masuda, 2009; Pattni et al., 2015 ). Further, 

even for a given structure, the rules of the evolutionary dynamics 

have a significant effect on the evolution of the population. 

Previous work has investigated a number of important ques- 

tions, the most widely considered being how cooperation can 

evolve. The evolution of cooperation, where individuals make sac- 

rifices to help others, can seem paradoxical within the context of 

natural selection, especially amongst unrelated individuals. There 

are a number of ways that mathematical modelling has demon- 

strated that cooperation can occur ( Nowak, 2006b ); one key way 

is through the presence of population structure, which can mean 

that cooperative individuals are more likely to interact with other 

cooperators, which makes them resistant to exploitation by defec- 

tors ( Ohtsuki et al., 2006; Santos and Pacheco, 2005 ). In particu- 

lar, this is true for structures where individuals are heterogeneous 
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( Santos et al., 2008 ) allowing hubs or clusters of cooperators to 

form. The dynamics that one uses are also important; for example 

Ohtsuki et al. (2006) showed that death-birth or birth-death dy- 

namics with selection on the second event promotes cooperation 

but not when selection happens in the first event. 

One limitation of evolutionary graph theory is that it nat- 

urally lends itself to pairwise games, whereas real populations 

can often involve the simultaneous interaction of many individ- 

uals ( Domenici et al., 20 0 0; Similä, 1997 ). Multiplayer games, 

whilst more common in economic modelling ( Binmore, 1992; 

Harsanyi and Selten, 1988 ), have become used in increasing fre- 

quency within evolutionary games starting with Palm (1984) and 

Broom et al. (1997) (see also Bukowski and Miekisz, 2004; Gokhale 

and Traulsen, 2010 ) and it is important to incorporate these too 

into the modelling of structured populations. A multiplayer pub- 

lic goods game ( Archetti and Scheuring, 2011; 2012; Gokhale and 

Traulsen, 2014; Wu et al., 2013 ), (and this type of game is central 

to our paper too, see Section 2.2 ) has been used in evolutionary 

graph theory ( Li et al., 2016; 2014; Perc et al., 2013; van Veelen and 

Nowak, 2012; Zhou et al., 2015 ), but this typically involves forming 

an individual and all of its neighbours into a group and allowing 

them to play a game. Although this is convenient, it is not really 

natural because there is no mechanism for deciding how individu- 

als spend their time, and so how they share that time with others, 

either singly or in groups. 

More recently a general framework has been developed ( Broom 

et al., 2015; Broom and Rychtář, 2012; 2016; Bruni et al., 2014 ) 

which considers the interaction of populations in a more flexible 

way, where groups of any size can form, with different propen- 

sity potentially depending upon a number of factors, including the 

history of the process. Crucially, the key elements of evolutionary 

graph theory of population structure, game and evolutionary dy- 

namics occur for this new framework too; this makes it capable 

of analysing different spatial structures whilst providing the flex- 

ibility for different multiplayer interactions. Prior to the current 

paper, the actual applications of the above framework have been 

limited. In particular only a single evolutionary dynamics (the BDB 

dynamics from the current paper) has been used, and only rela- 

tively simple populations, which resembled those in evolutionary 

graph theory (the population consisting of individuals each resi- 

dent at a unique graph vertex) have been considered. 

In this paper we further develop the general theory of the 

framework originated in Broom and Rychtář (2012) . We first show 

how to represent subpopulations using a reduced graphical repre- 

sentation within our structure, which will then allow us to poten- 

tially consider larger populations with a richer structure than pre- 

viously. We then demonstrate how to apply a standard set of evo- 

lutionary dynamics to consider a range of evolutionary processes. 

This is vital since, as mentioned above, dynamics can have a big 

effect on the outcome of evolution within other models, including 

evolutionary graph theory, and as we will see, this is certainly also 

true for our work. Finally we use these new tools to consider the 

evolution of cooperation using a multiplayer public goods game 

( Archetti and Scheuring, 2011; Szolnoki and Perc, 2010a; 2010b; 

van Veelen and Nowak, 2012 ) and show that cooperation can occur 

when both the structure and evolutionary dynamics act together in 

favour of the cooperators. 

The paper is structured as follows: in Section 2 the model 

framework is described, including how to incorporate subpopula- 

tions. In Section 3 a standard set of evolutionary dynamics to be 

used with our model are defined. In Section 4 we introduce and 

discuss the important concepts of fixation probability and temper- 

ature. In Section 5 we study the evolution of cooperation in our 

model with subpopulations. Section 6 is then a general discussion. 

Fig. 1. The fully independent model from Broom and Rychtář (2012) . There are N 

individuals who are distributed over M places such that I n visits place P m with prob- 

ability p nm . Individuals interact with one another when they meet, for example, I 1 
and I 2 can interact with one another when they meet in P 1 . 

2. A framework for modelling evolution in structured 

populations 

A framework for modelling the movement of individuals was 

presented in Broom and Rychtář (2012) . This is a very general and 

flexible methodology, the details of which are not necessary for 

the current paper. Below we describe the fully independent ver- 

sion of this framework in which individuals move independently of 

each other and independently of the population’s history (any past 

movements), and a version of the fully independent model called 

the territorial raider model as introduced in Broom and Rychtář 

(2012) and further developed in Broom et al. (2015) . We then de- 

velop a generalization of this model, which then forms the basis of 

much of the work in this paper, although we note that Section 3 in 

particular is more general. Important terms used in the current pa- 

per are given in Table 1 . 

2.1. The population structure 

We begin by introducing the fully independent model. Consider 

a population made up of N individuals I 1 , . . . , I N who can move 

around M places P 1 , . . . , P M 

. The probability of individual I n being 

at place P m 

is denoted by p nm 

; see Fig. 1 for a visual representa- 

tion using a bi-partite graph. When individuals move around they 

form groups. Let G denote any group of individuals, then the prob- 

ability χ(m, G) that group G forms in place P m 

is given by 

χ(m, G) = 

∏ 

i ∈G 
p im 

∏ 

j / ∈ G 
(1 − p jm 

) . (2.1) 

We can show from Eq. (2.1) that 

1 = 

∑ 

m 

∑ 

G 
n ∈G 

χ(m, G) ∀ n. (2.2) 

This follows intuitively from the fact that individual I n has to be 

present in some place P m 

in some group G at any given time. The 

mean size of an individual’s group (see also Bruni et al., 2014 ) is 

given by 

Ḡ = 

∑ 

m 

∑ 

G 

χ(m, G ) |G | 2 ∑ 

m 

∑ 

G χ(m, G ) |G | = 

∑ 

m 

∑ 

G 

χ(m, G ) |G | 2 
N 

(2.3) 

where the simplification of the denominator follows from Eq. (2.2) . 

When a group of individuals is formed they will then interact 

with one another. In particular, individual I n will receive a payoff

that depends upon the group G it is present in and the place P m 

occupied by this group. This is denoted as R n,m, G and was referred 

to in Broom and Rychtář (2012) as a direct group interaction pay- 

off because individual I n only interacts with other individuals with 

whom it is directly present ( Broom and Rychtář, 2012 allowed for a 

more general class of payoff but this is the only type we will con- 

sider, and hence will just refer to it as the payoff). Individual I n ’s 
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