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a b s t r a c t 

Modelling all three spatial dimensions is often much more computationally expensive than mod- 

elling a two-dimensional simplification of the same system. Researchers comparing these approaches in 

individual-based models of microbial biofilms report quantitative, but not qualitative, differences between 

2D and 3D simulations. We show that a large part of the discrepancy is due to the different space packing 

densities of circles versus spheres, and demonstrate methods to compensate for this: the internal density 

of individuals or the distances between them can be scaled. This result is likely to be useful in similar 

models, such as smoothed particle hydrodynamics. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Letter 

Simplification of the mental model one has of a real-life sys- 

tem is practically unavoidable when translating that mental model 

into a mathematical model: simpler models tend to be more an- 

alytically tractable or less computationally expensive. This is par- 

ticularly true when the system belongs to biology ( Gunawardena, 

2014 ). A typical example of model simplification is using fewer 

spatial dimensions than the realistic three. This is justified when 

some dimensions may be considered as equivalent to each other, 

and when there is no need to consider navigation of fluids or 

objects around obstacles. Relevant examples where reduced di- 

mensionality is assumed include smooth particle hydrodynamics 

of viscous media ( Lu et al., 2005 ) and Monte Carlo simulations of 

protein interactions ( Woodard et al., 2016 ). 

While such simplification of a model is useful, it can intro- 

duce bias and so affect results. Bacterial cells are often mod- 

elled as hard spheres (three-dimensional) or hard circles (two- 

dimensional). We show that a bias is introduced when simplifying 

a model of spheres to a model of circles, which does affect results 

in simulations of biofilm growth and may also affect simulations 

of other systems. A method to compensate for the bias is devel- 
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oped from first principles and its efficacy demonstrated in biofilm 

simulations. 

Biofilms are communities of microorganisms growing in close 

proximity, attached to some solid surface or interface, and are im- 

portant habitats in the study of microbial ecology and for microbes 

themselves ( Allison and Gilbert, 1992; Costerton et al., 1995 ). Mi- 

croorganisms in aqueous biofilms consume nutrients dissolved in 

the fluid, grow and reproduce, and so cause the expansion of 

the entire community. Dissolved nutrients and other chemicals are 

typically referred to as solutes. Fluid flow is obstructed within the 

biofilm and its immediate surroundings so much that the motion 

of solutes is dominated by diffusion and advection can be ignored 

( Manz et al., 2003; Neu et al., 2010 ). 

The two dimensions parallel to the solid surface are often con- 

sidered equivalent, since the concentration gradient is typically 

strongest along the axis orthogonal to the surface and the gradient 

primarily determines biofilm morphology. In the previous studies 

on biofilm simulation referenced in this work, the key focus is of- 

ten the qualitative, emergent behaviour of microbial populations 

rather than quantitatively precise prediction of biofilm growth. 

Other systems may be translationally invariant along one dimen- 

sion, such as the azimuthal when considering flow along a pipe. 

A toy model of biofilm growth (single solute and single biomass 

type) illustrates the key processes. The diffusion-reaction equation 

describes the dynamics of solute concentration: 

∂c 

∂t 
= ∇ · ( D ∇c ) + f ( c, X ) (1) 
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Fig. 1. Biofilm simulations. (A,B) Typical biofilm structures simulated using the parameters given in Supplementary File 2. Cells are shown in red and the solute concentration 

in greyscale: white for the maximum concentration in the bulk liquid ( c b , 1 mg L −1 ) and black for no solute (0 mg L −1 ). The solid surface is shown as a black region at the 

bottom of each panel. (A) is three-dimensional; (B) two-dimensional, using the unscaled values of ρ and s f . 

where c is the solute concentration, D the diffusivity, X the biomass 

concentration, and function f the combined rates of production 

(positive) and of consumption (negative) by chemical reactions 

( Wanner et al., 2006; Horn and Lackner, 2014 ). In the simulations 

reported later, diffusion-reaction is assumed to operate on a far 

shorter timescale than growth, and so the former is taken to be 

at steady-state when the latter is considered: in the context of Eq. 

(1) , this means that the time-derivative on the left-hand side is set 

to zero ( Lardon et al., 2011 ). 

The distribution of biomass is given in more general terms: 

∂X 

dt 
= growth ( c, X ) + mov ement ( X ) . (2) 

The growth term is linked to the reactions described by func- 

tion f in ( 1 ), and the movement term depends on further details of 

the model. The exact forms of functions f, growth and movement 

used in simulations here are described in Supplementary File 1. 

Numerical solution of ( 1 ) and ( 2 ) may require spatial discretisation 

of continuous fields, e.g., into rectilinear grids. 

Individual-based modelling has proven a popular method of 

investigating biofilms, particularly since the heterogeneity within 

clonal populations of microorganisms became apparent ( Kreft et 

al., 2013; Ackermann and Schreiber, 2015; Hellweger et al., 2016 ). 

Of these, hybrid models are among the most realistic; these treat 

microorganisms as discrete, non-overlapping particles, and solutes 

as continuous scalar fields. The rule that particles may not over- 

lap leads to the movement part of ( 2 ), since cells push away 

their neighbours as they grow and divide ( Kreft et al., 1998 ). The 

biomass concentration field and/or field for reaction rates must be 

updated at each time step by mapping the biomass and/or reaction 

rates of each microbial cell onto the grid voxel(s) corresponding 

to its location. Particles have internal biomass density, ρ , and fill 

the space with packing density, η. In a grid voxel i , the fraction of 

space occupied by biomass is described by ηi ∈ [0, 1] and the frac- 

tion that is fluid is therefore given by (1 −ηi ): this is also known as 

the porosity. The local biomass concentration is then X i = ρ ηi . 

Individual microbial cells are often represented as hard spheres 

in three-dimensional space and as hard circles in two-dimensional 

space ( Fig. 1 A,B). Where physically realistic parameters (e.g. den- 

sity as mass per volume) require inclusion of an extrusive third di- 

mension, circles are typically extended to cylinders with co-parallel 

axes of identical length ( Picioreanu et al., 1998a, 1998b; Alpkvist 

et al., 2006; Lardon et al., 2011; Ardré et al., 2015 ). Furthermore, 

the thresholds in cell radius that trigger events such as division 

and death are consistent between simulations in 2D and in 3D: if 

thresholds of volume or mass were used, the cell radii at these 

events would vary according to the length of this third dimension 

( Lardon et al., 2011 ). In two-dimensional simulations this approach 

ensures that cell radii, and so the overall shape and size of the 

biofilm, are unaffected by the choice of extrusion thickness. Where 

these simplifications are made, and two- and three-dimensional 

simulations of the same system compared, authors observe quanti- 

tative differences but little or no qualitative differences. Picioreanu 

et al. (2004) modelled a multispecies nitrifying biofilm: compared 

to biofilms simulated in 3D, those in 2D grew more quickly in 

terms of total biomass per unit surface area and caused ammo- 

nium concentrations in the bulk fluid to decline more rapidly, but 

the overall trends were the same. Alpkvist et al. (2006) built on 

the work of Picioreanu et al. (2004) , expanding the model to in- 

clude extracellular polymeric substance (EPS): they also reported 

quantitative differences that did not significantly change the con- 

clusions, but did not describe these differences in any detail. 

We point to the different packing densities of circles and of 

spheres as the source of these quantitative differences. The max- 

imal packing density of spheres of equal radius is 

ηsphere = 

π

3 

√ 

2 

≈ 0 . 74 (3) 

( Hales, 1992 ) and the equivalent packing density for circles is 

ηcircle = 

π

2 

√ 

3 

≈ 0 . 91 (4) 

( Tóth, 1972 ). Given that simulated cells in a biofilm are growing, 

they will have different radii and are unlikely to achieve optimal 

packing. However, the packing achieved by random close-packed 

circles and spheres fall short of the maximum packing by a similar 

degree in two- and in three-dimensional simulations: 

ˆ ηsphere ≈ 0 . 64 (5) 
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