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a b s t r a c t 

Accurate estimation of evolutionary distances between taxa is important for many phylogenetic recon- 

struction methods. Distances can be estimated using a range of different evolutionary models, from 

single nucleotide polymorphisms to large-scale genome rearrangements. Corresponding corrections for 

genome rearrangement distances fall into 3 categories: Empirical computational studies, Bayesian/MCMC 

approaches, and combinatorial approaches. Here, we introduce a maximum likelihood estimator for the 

inversion distance between a pair of genomes, using a group-theoretic approach to modelling inversions 

introduced recently. This MLE functions as a corrected distance: in particular, we show that because of 

the way sequences of inversions interact with each other, it is quite possible for minimal distance and 

MLE distance to differently order the distances of two genomes from a third. The second aspect tack- 

les the problem of accounting for the symmetries of circular arrangements. While, generally, a frame of 

reference is locked, and all computation made accordingly, this work incorporates the action of the di- 

hedral group so that distance estimates are free from any a priori frame of reference. The philosophy 

of accounting for symmetries can be applied to any existing correction method, for which examples are 

offered. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Estimates of evolutionary distance between pairs of taxa are 

key ingredients for reconstructing phylogenies, but are difficult to 

obtain reliably ( Felsenstein, 20 04; Gascuel, 20 05 ). This is especially 

true for evolutionary models in which events can interact with 

each other in a way that affects inference. One estimate of distance 

between two genomes is the minimal distance which is model- 

specific and represents an assumption of parsimony in evolution- 

ary paths through genome space (see Fertin, 2009 for a discussion 

of rearrangement models in this context). In fact, for most mod- 

els, there are infinitely many possible evolutionary paths between 

any two genomes, and the minimal distance is simply the length 

∗ Corresponding author. 

E-mail addresses: 16115907@student.westernsydney.edu.au (S. Serdoz), 

egri-nagy@aiu.ac.jp (A. Egri-Nagy), jeremy.sumner@utas.edu.au (J. Sumner), 

barbara.holland@utas.edu.au (B.R. Holland), peter.jarvis@utas.edu.au (P.D. Jarvis), 

m.tanaka@unsw.edu.au (M.M. Tanaka), a.francis@westernsydney.edu.au (A.R. Fran- 

cis). 

of one of the shortest of these; by definition the minimal distance 

can only underestimate the true number of evolutionary events. 

The problems with using a minimal distance are well docu- 

mented, especially when time periods are long and the space of 

obtainable genomes becomes saturated. Given enough time, all 

evolutionary endpoints become equally likely, and any signal of ac- 

tual evolutionary time is lost. In some models, metrics have been 

developed to account for multiple changes; the most well-known 

perhaps being the Jukes–Cantor correction for models of single 

nucleotide substitution ( Jukes and Cantor, 1969 ). This method re- 

quires all events to be independent (a common assumption with 

nucleotide substitution), but such independence does not hold for 

most genome rearrangement models (such as inversion) and so al- 

ternative approaches are needed. 

Given pairwise distances obtained from a phylogenetic tree, 

Buneman (1971) demonstrated that the recovered tree is unique, 

a fact which also follows from the 4-point condition ( Buneman, 

1974 ). Furthermore, Warnow (1996) and Atteson (1999) suggest 

that if the true evolutionary distance inference is sufficiently ac- 

curate, even polynomial time reconstruction algorithms, such as 

Neighbor Joining ( Saitou and Nei, 1987 ), will return the correct 
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phylogeny. Recent work by Gascuel and Steel (2015) places the re- 

sults of Atteson et al. in a statistical framework. 

Some studies attempt to find a relationship between true dis- 

tance and minimal distance (or some other available measure such 

as breakpoint distance), and use this to produce an estimate of 

true distance as a function of minimal distance. For instance, Wang 

and Warnow (2001) introduced an estimator of true evolutionary 

distance called IEBP (inverting the expected breakpoint distance). 

The method operates under the generalised Nadeau–Taylor model 

( Nadeau and Taylor, 1984 ) and provides a robust polynomial time 

algorithm to estimate true evolutionary distance. Similarly, the EDE 

(empirically derived estimator) of Moret et al. (2001) samples the 

relationship between inversion distance and true evolutionary dis- 

tance before providing a fit. Applications of IEBP and EDE can be 

seen in Wang (2002) . 

While a useful correction, such estimates are based on just one 

factor – the minimal distance – and can’t account for underlying 

structure of the genome space (in our framework, the Cayley graph 

of the group). The key point being that not all elements of equal 

minimal distance are equally likely. 

As an optimal estimate of true distance, we would like (very 

loosely) some sort of expected distance – a function of final ar- 

rangement – constructed as a weighted average of evolutionary 

paths, pushing the problem into the intersection of combinatorics 

and statistics. In this vein, Eriksen (2002) offered an approxima- 

tion of the expected number of inversions to have occurred given 

n breakpoints. This was followed by a method of estimating the 

expected inversion distance by looking at the expected transpo- 

sition distance ( Eriksen and Hultman, 2004 ), and generalizations 

such as Eriksen (2005) and Dalevi and Eriksen (2008) . 

Given the sizes of the spaces involved, MCMC and Bayesian 

methods play an important role. York et al. (2002) use a Bayesian 

framework to estimate true distances for inversions. On the MCMC 

front, Miklós (2003) introduced a time continuous stochastic ap- 

proach to genome rearrangements (modelled as a Poisson pro- 

cess), allowing reliable estimates of true distances. The key aim 

being to describe the posterior distribution of true evolutionary 

distance given two arrangements. There have been several general- 

izations to these methods: Durrett et al. (2004) include transloca- 

tions as well as inversions; Larget et al. (2005) describe a Bayesian 

method for phylogeny inference and offer a comparison between 

their approach and a parsimony approach; and Miklós and Darling 

(2009) provide a method to estimate the number of minimal walks. 

This paper describes a novel maximum likelihood approach to 

corrected rearrangement distances. We focus on models of genome 

rearrangement involving invertible operations, such as inversion 

and translocation, which can be described in group-theoretic 

terms, using the framework introduced in Egri-Nagy et al. (2014b ) 

and Francis (2014) . This algebraic framework treats genomes as the 

images of the actions of elements of a finite reflection group, and 

allows us to treat the genome as not fixed in space, but free to 

rotate in Euclidean space. Each genome is then considered to be a 

coset in the quotient of the main reflection group by the dihedral 

group. 

The next section describes the general group-theoretic models 

of chromosome rearrangements on which this paper is based. The 

third section introduces the likelihood function under our model, 

and gives some basic examples of what these functions look like. 

Next, we compare the minimal distance to the MLE and give an 

example of how the resulting phylogenetic inference can give dif- 

ferent results. We then consider properties of group elements that 

may characterise the likelihood function and hence the MLE of dis- 

tance. The penultimate section describes what is required to ac- 

count for dihedral symmetry, and illustrates the approach with 

some example phylogenies. We end with a discussion of some of 

the issues involved in using the MLE. 

2. Group theoretic models of rearrangement 

In this section we describe group-theoretic models of genome 

rearrangement, following the development in Egri-Nagy et al. 

(2014b ). Such models allow events that change the underlying se- 

quence in a reversible way, including for example inversion and 

translocation but not insertion or excision. The invertible rear- 

rangements defined by the model then generate a group , and 

there is a one-to-one correspondence between the set of possible 

genome arrangements and the set of elements of this group. 

This correspondence in practice requires two additional as- 

sumptions. First, we choose one genome as the reference genome, 

that will correspond to the group identity element. This is arbi- 

trary, and is discussed in more detail below. Second, we assume 

there is no rotation of the genome in 3-dimensional space. We 

think of this as fixing a “frame of reference” for all genomes. This 

assumption is removed for calculating MLEs of evolutionary dis- 

tances in ways described below, by taking a quotient by the dihe- 

dral group. 

The genome space is then realized as a graph with genomes as 

vertices and allowable evolutionary events defining edges between 

them. This corresponds to a graph based on the group, called the 

Cayley graph , whose vertices are group elements and edges repre- 

sent multiplication by the group generators. Thus the Cayley graph 

can be thought of as a map of the genome space, with vertices 

the possible genomes (group elements) and edges the possible re- 

arrangement events (generators of the group) ( Clark et al., 2016 ). 

The Cayley graph depends on both the group G and the generating 

set S . 

Given a choice of one arrangement as the reference genome G 0 , 

every other genome arrangement can be obtained from G 0 by a se- 

quence of rearrangements. Because each allowable rearrangement 

event defines a generator of the group, this sequence of rearrange- 

ments is a product of group generators, and therefore corresponds 

to a group element itself. Thus the reference genome G 0 corre- 

sponds to the identity element e of the group G, and each other 

possible genome corresponds to a unique group element (remem- 

bering that for now we assume a fixed frame of reference). Note 

that there may be many sequences of events giving rise to the 

same genome, and these correspond to different walks through the 

Cayley graph. 

A brief note on the language of paths and walks. In graph the- 

ory a walk through a graph is an alternating sequence of vertices 

and edges beginning at one vertex and ending at another. This may 

or may not involve traversing the same edge or vertex multiple 

times. A path on the other hand is a walk in which no vertices 

or edges are visited more than once. To avoid confusion we will 

use “walk” in the context of the Cayley graph, but it is worth not- 

ing that minimal walks between two group elements on the Cay- 

ley graph are all paths, in this sense. It is common, however, out- 

side of graph theory, to use the expression “evolutionary path” be- 

tween two organisms without the implication that no genome has 

been visited more than once (allowing, for instance, homoplasy or 

convergent evolution), and we will also use “path” in that context, 

where clear. 

Returning to walks and distances on the Cayley graph, observe 

that the choice of reference genome is not important. For any two 

genomes G 1 and G 2 with corresponding group elements g 1 and g 2 , 

there is a unique group element (namely g −1 
1 

g 2 when acting on 

the right) that transforms G 1 into G 2 . As a result of the transitive 

group action ( Babai, 1996 ), the group element is independent of 

the choice of reference genome. For instance if G 1 was chosen as 

the reference genome then the walk from G 1 to G 2 would still cor- 

respond to the group element g −1 
1 

g 2 (which in this case would be 

simply g 2 , since here g 1 = e ). 
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