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a b s t r a c t 

In iterated continuous games, the cooperative investment in a given round is determined by the initial 

investment and the reciprocation rate, which describe the investment in the first round and the depen- 

dence of current investment on the partner’s last move, respectively. These two traits usually intertwine 

during evolution. However, their coevolution is not fully explored. In this paper, we thereby study their 

coevolution in the iterated continuous public goods games. We find that the reciprocation rate plays a 

dominant role during the coevolution in both finite and infinite populations. If it exceeds a threshold, a 

stingy population where individuals invest no more than their partner’s last investment evolves to full 

cooperation, and a generous population where individuals invest more than their partner’s last invest- 

ment decreases to a moderate cooperative state, investing a portion in the first round and then escalating 

investment in the following rounds. Otherwise, the stingy population evolves to full defection, and the 

generous one rises to another moderate cooperative state. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Cooperation is ubiquitous in the real world. In biological sys- 

tems, cells cooperate with each other in multicellular organisms. 

In human society, people cooperate to formulate and run various 

social organizations ( Buss, 1987; Dugatkin, 1997; Eigen and Schus- 

ter, 1979; Michod, 1983; Smith and Szathmáry, 1995 ). However, 

cooperative behavior can not emerge naturally, since noncoop- 

erative individuals, who gain the benefit without the cost of 

cooperative acts, have higher fitness and thus are favored by nat- 

ural selection. What leads to the ubiquitousness of cooperation? 

Nowak (2006) suggested five mechanisms for the evolution of 

cooperation. As one of the five mechanisms, direct reciprocity, de- 

scribing the same individuals play a game repeatedly, can establish 

cooperation among unrelated individuals ( André, 2015 ). It is easy 

to discover this mechanism in real systems, for example, impalas 

groom each other ( Hart and Hart, 1992; Mooring and Hart, 1992 ). 

Iterated games provide a game theoretic framework for study- 

ing the evolution of cooperation through direct reciprocity. In 

iterated discrete games, individuals have only two possible strate- 

gies in each round: cooperation or defection ( Fu et al., 2007; Imhof 

et al., 2005; Imhof and Nowak, 2010; Nowak et al., 2004; Press and 

Dyson, 2012; Stewart and Plotkin, 2013; 2014 ). However, coopera- 
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tion is rarely all-or-nothing in the real world. There is considerable 

evidence that cooperative investment varies continuously within 

a certain range. For example, the duration of an allopreening 

bout for guillemots varies from under a second to over a minute 

( Roberts and Sherratt, 1998 ), where the gradually increasing du- 

ration means larger and larger amounts of investment. To better 

depict such situations, iterated continuous games with continuous 

investments, as natural extensions of the discrete ones, are pro- 

posed ( Killingback and Doebeli, 2002; Killingback et al., 1999; Le 

and Boyd, 2007; Roberts and Sherratt, 1998; Takezawa and Price, 

2010; Wahl and Nowak, 1999 ). In iterated continuous games, the 

amount of contribution in a given round is determined by the 

initial investment, meaning the investment in the first round, and 

the reciprocation rate, describing the relation between individuals’ 

investments in two successive rounds. These two traits usually 

intertwine during the evolution. However, their coevolution is not 

fully explored. Here, we are aiming to study the coevolution of the 

initial investment and the reciprocation rate through the iterated 

two-player continuous public goods game (PGG), in which two 

players equally share the benefit produced by their total invest- 

ments and may bear different costs incurred by their own invest- 

ments in each round ( Archetti and Scheuring, 2011; Chen et al., 

2012; 2015; Hauert et al., 2006a; Perc et al., 2013; Wu et al., 2014 ). 

In iterated continuous games, strategies stipulate investments 

in every round. Various strategies have been proposed, such as 

the “raise-the-stakes” strategy (a player invests a little in the first 

round and then raises investment with partners that have matched 
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or bettered its last move) ( Roberts and Sherratt, 1998 ), the payoff- 

based strategy (the investment of a player depends on its own 

payoff in the last round) ( Doebeli and Knowlton, 1998; Killing- 

back and Doebeli, 2002 ), the autocratic strategy (a player can 

enforce a unilateral claim to an unfair share of rewards from the 

partner) ( McAvoy and Hauert, 2016; Press and Dyson, 2012 ), and 

the reactive strategy (the investment of a player depends on its 

partner’s strategy in the last round) ( Nowak and Sigmund, 1990 ). 

Specifically, it has been showed that the most successful linear 

reactive strategies (i.e., the current investment is linearly related 

to the partner’s last investment) invest all in the first round, and 

then offer more than their partner’s last investment, but cooperate 

fully only if their partner does the same ( Wahl and Nowak, 1999 ). 

Moreover, Le and Boyd (2007) have proposed a class of piecewise 

strategies which is constituted by two linear reactive strategies. 

One of them is the stingy strategy (a player invests no more than 

what the partner invested in the last round), and the other one 

is the generous strategy (a player offers more than the partner’s 

last investment). The piecewise functional form ensures that 

investments always vary within a reasonable range. Moreover, as 

their names suggest, two typical kinds of investment behavior, 

stinginess and generosity, can be well characterized by this class 

of strategies. In this paper, we focus on the stingy and generous 

strategies proposed by Le and Boyd (2007) . However, in contrast to 

their study, which has only studied the evolution of reciprocation 

rate and the evolution of initial investment separately, we now 

analyze the coevolution of these two traits. 

Population size usually has a vital effect on evolutionary game 

dynamics. For iterated discrete games, cooperators are favored by 

natural selection to replace defectors in finite populations, which 

does not hold in infinite populations ( Imhof et al., 2005; Nowak 

et al., 2004 ). Does population size influence evolutionary dynam- 

ics for iterated continuous games? Iterated continuous games 

in infinite populations have been widely studied. However, the 

corresponding analysis in finite populations has attracted much 

less attention ( André and Day, 2007; Imhof and Nowak, 2010 ). 

Motivated by this, we study the evolutionary dynamics of iterated 

continuous games in both finite and infinite populations. We find 

that for linear production and remaining functions, the dynamics 

in finite populations coincides with that in infinite populations. 

However, when nonlinear production and remaining functions are 

used, the discrepancy between them arises. 

In this paper, we first investigate the evolution of the initial 

investment and that of the reciprocation rate given that the other 

trait is fixed. Then, their coevolution is studied. We find that the 

reciprocation rate plays a dominant role during the coevolution. 

For stingy strategies, if it exceeds a threshold value at the start 

of evolution, the initial investment and the reciprocation rate 

increase, and the population evolves to full cooperation, investing 

all throughout all rounds; otherwise, both of them decrease, and 

the population evolves to full defection, investing nothing in 

every round. Whereas for generous strategies, the reciprocation 

rate above (below) the threshold at the start leads to the decrease 

(increase) of these two traits. A generous population evolves to full 

cooperation, or moderate cooperation, investing a portion in the 

first round and then escalating investment in the following rounds. 

2. Model 

In a well-mixed population of size N , any two individuals play 

the iterated continuous PGG. The next round of game occurs with 

probability w , 0 ≤ w ≤ 1. The case of w = 0 is the one-shot game, 

and w = 1 means that individuals will interact infinite rounds. In 

each round, both individuals are endowed with the same available 

resource (1 for simplicity), and they invest some of their endow- 

ments into a public pool simultaneously. The investment, which 

takes any value between 0 and 1, is determined by two continuous 

traits: the initial investment p ∈ [0, 1] and the reciprocation rate 

r ∈ [0, 2]. Here, p denotes the amount of investment in the first 

round, and r quantifies the dependence of an individual’s current 

investment m k (without loss of generality, we set the present mo- 

ment as the k th round, where k > 1) on its partner’s investment 

in the immediately previous round m 

′ 
k −1 

. 

A strategy pair ( p, r ) stipulates the investment in every round. 

Here, the stingy strategies S p,r with 0 ≤ r ≤ 1 and the generous 

strategies G p,r with 1 < r ≤ 2 are considered. An individual using 

S p,r invests p in the first round, and then its investment is r times 

what its partner invested in the previous round, i.e., m k = r m 

′ 
k −1 

. 

When two stingy individuals with 0 ≤ r < 1 play against each 

other, one’s investment is always less than the other one’s last 

investment, and their investments non-monotonically decrease 

to zero as k → ∞ . When two stingy individuals with r = 1 play 

against each other, their investments alternate between their 

initial investments. It is worth mentioning that S p ,1 can be viewed 

as the continuous TFT, and S 0,0 is identical with ALLD. An indi- 

vidual using G p,r invests p in the first round, and then it invests 

(r − 1)( 1 − m 

′ 
k −1 

) more than its partner’s last investment, i.e., m k = 

m 

′ 
k −1 

+ (r − 1)( 1 − m 

′ 
k −1 

) . When two generous individuals play 

the iterated continuous PGG, their investments non-monotonically 

increase to one as k → ∞ . Here, G 1,2 is identical with ALLC. 

The payoff of an individual is accumulated over all rounds. 

In every round, two individuals get the same public goods. The 

amount of public goods each individual gets is specified by the 

production function g( ̄m ) , which is an increasing function of the 

average of two individuals’ investments m̄ and satisfies g(0) = 0 . 

Besides the public goods, the remaining endowment (the initial 

endowment 1 minus the cost incurred by the investment) is the 

other part of an individual’s payoff. It is specified by the remaining 

function h ( m ) which is a decreasing function of the individual’s 

investment m and meets h (0) = 1 and h (1) = 0 . Here, P xy , which 

denotes the expected payoff for an individual with strategy x 

playing against an individual with strategy y , is given by 

P xy = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∞ ∑ 

t=0 

(
w 

2 t 

(
g 

((
r r ′ 

)t p+ p ′ 
2 

)
+ h 

(
r t r ′ t p 

))
+ w 

2 t+1 

(
g 

((
r r ′ 

)t r ′ p+ rp ′ 
2 

)
+ h 

(
r t+1 r ′ t p ′ 

)))
, x = S p,r , y = S p ′ ,r ′ ;

∞ ∑ 

t=0 

(
w 

2 t 

(
g 

(
( 2 − r ) 

t 
(
2 − r ′ 

)t ( p−1 ) + ( p ′ −1 ) 
2 

)
+ h 

(
( 2 − r ) 

t 
(
2 − r ′ 

)t 
( p − 1 ) + 1 

))
+ w 

2 t+1 

(
g 

(
( 2 − r ) 

t 
(
2 − r ′ 

)t ( 2 −r ′ ) ( p−1 ) + ( 2 −r ) ( p ′ −1 ) 
2 

)
+ h 

(
( 2 − r ) 

t+1 
(
2 − r ′ 

)t (
p ′ − 1 

)
+ 1 

)))
, x = G p,r , y = G p ′ ,r ′ . 

(1) 

3. Results 

We use adaptive dynamics to analyze the evolution of the 

population strategy. Here, the population strategy is x ∈ { p, r , ( p, 

r )}, meaning that all the individuals use strategy x , and a mutant 

with strategy y rarely appears in the population. We assume x and 

y are of the same type, i.e., they are both stingy or both generous. 

The adaptive dynamics of x in a finite population of size N is 

described by (see Appendix A for details): 

˙ x = 

∂ 

∂y 
| y = x ρ( y, x ) = 

( N − 1 ) ∂ ∂y 
| y = x P yx − ∂ 

∂y 
| y = x P xy 

2 NP xx 
= D ( x ) , (2) 
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