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a b s t r a c t 

The coalescent process is a widely used approach for inferring the demographic history of a popula- 

tion, from samples of its genetic diversity. Several parametric and non-parametric coalescent inference 

methods, involving Markov chain Monte Carlo, Gaussian processes, and other algorithms, already exist. 

However, these techniques are not always easy to adapt and apply, thus creating a need for alternative 

methodologies. We introduce the Bayesian Snyder filter as an easily implementable and flexible minimum 

mean square error estimator for parametric demographic functions on fixed genealogies. By reinterpret- 

ing the coalescent as a self-exciting Markov process, we show that the Snyder filter can be applied to 

both isochronously and heterochronously sampled datasets. We analytically solve the filter equations for 

the constant population size Kingman coalescent, derive expressions for its mean squared estimation er- 

ror, and estimate its robustness to prior distribution specification. For populations with deterministically 

time-varying size we numerically solve the Snyder equations, and test this solution on common demo- 

graphic models. We find that the Snyder filter accurately recovers the true demographic history for these 

models. We also apply the filter to a well-studied, dataset of hepatitis C virus sequences and show that 

the filter compares well to a popular phylodynamic inference method. The Snyder filter is an exact (given 

discretised priors, it does not approximate the posterior) and direct Bayesian estimation method that has 

the potential to become a useful alternative tool for coalescent inference. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Genetic sequences contain information about the dynamics of 

the population from which they were sampled. The coalescent pro- 

cess provides a framework for extracting this information by de- 

scribing the shared ancestry among n individuals randomly sam- 

pled from a population of effective size N ( t ) � n ( Kingman, 1982 ). 

The shared ancestry of the sampled individuals can be modelled as 

a random, ultrametric, bifurcating genealogy with n tips and n − 1 

branches. The branch lengths give the times at which sampled lin- 

eages coalesce. These coalescence times depend on N ( t ) which is 

sometimes also called the demographic function. N ( t ) essentially 

describes the dynamics of the population. A key problem in coa- 

lescent inference is the estimation of N ( t ) or its embedded param- 

eters either directly from a genealogy, or indirectly from a set of 

sampled genetic sequences. 

The original, standard coalescent was developed by Kingman for 

a constant N ( t ) and for sets of genetic sequences that are sampled 

at one time point (isochronous sampling) ( Kingman, 1982 ). Since 
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then, the coalescent model has been generalised to incorporate de- 

terministically varying population sizes ( Griffiths and Tavare, 1994 ), 

stochastic population fluctuations ( Kaj and Krone, 2003 ), geo- 

graphically structured populations ( Notohara, 1990 ), and data sets 

containing sequences sampled at different time points (hete- 

rochronous sampling) ( Rodrigo et al., 1990 ). As a result, the coa- 

lescent model has been applied to a range of problems in many 

biological disciplines including conservation biology, anthropology 

and epidemiology ( Strimmer and Pybus, 2001 ). Our work is geared 

towards infectious disease epidemiology in which pathogen pop- 

ulations, due to their large size and very rapid molecular evolu- 

tion, are often treated as deterministically varying in size and het- 

erochronously sampled. In this setting, the coalescent process has 

been successfully used to infer the growth and history of the hep- 

atitis C epidemic in Egypt ( Pybus et al., 2003 ), the oscillating be- 

haviour of dengue virus in Vietnam ( Rasmussen et al., 2014 ) and 

to estimate the generation time of HIV-1 within individual in- 

fected patients ( Rodrigo et al., 1990 ). The accuracy and efficiency 

of such inferences are linked to the statistical techniques used. 

Consequently, the design of good coalescent demographic inference 

methods is important ( Kingman, 20 0 0 ). 
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We focus here on the coalescent inference problem for a hap- 

loid population with deterministically varying population size, un- 

der both isochronous and heterochronous sampling. We follow the 

typical coalescent assumptions of a panmictic (well mixed) and 

neutrally evolving population that is sparsely and randomly sam- 

pled ( Nordberg, 2001 ). Several methods for inferring the demo- 

graphic function, N ( t ), have been developed and can be broadly 

categorised into parametric (model based) and non-parametric 

(design based) approaches ( Diggle et al., 20 0 0 ). The parametric 

approach characterises N ( t ) using a biologically-inspired function 

(model) with a fixed number of explicit demographic parame- 

ters. These parameters interact in a preset manner and the model 

dimensionality is independent of n . In contrast, non-parametric 

methods use more generalised descriptions for N ( t ) or rely on sum- 

mary statistics derived from the data. Non-parametric methods 

therefore make weaker assumptions about demographic dynamics. 

This may allow a more robust description of population size but 

comes at the expense of less statistical power, and with the pos- 

sibility that model dimensionality increases with n ( Palacios and 

Minin, 2013; Yang, 2014 ). Consequently, the choice of parametric or 

non-parametric methods depends on how much one knows about 

the sampled population. If the nature of the dynamics can be re- 

liably encoded in a predefined function then parametric methods 

should lead to more efficient estimation ( Diggle et al., 20 0 0 ). How- 

ever, if little is known about the study population, or the possibil- 

ity of model misspecification is high then non-parametric methods 

should be used. 

Here we assume that a suitable parametric demographic model 

N(t, � x ) has already been chosen and that its parameters � x , or a 

function of them, are to be estimated from the data in an opti- 

mal way. We limit our current work to parametric demographic 

inference for two reasons. First, our interest is in developing new 

inference techniques that minimise approximations and that are 

theoretically rigorous enough to allow analytic results when pos- 

sible. To do this explicit models are useful and so we apply para- 

metric descriptions. Our metric for defining inference performance 

will be the classical mean squared estimation error (defined later). 

Secondly, we want to use techniques that avoid numerical issues 

such as optimisation to local minima or poor algorithm conver- 

gence. These could hamper the flexibility of an inference method 

and reduce reproducibility among analyses. Such issues can some- 

times be encountered in (but are not limited to) advanced non- 

parametric coalescent inference methods that approximate the 

posterior distribution using Markov Chain Monte Carlo (MCMC) or 

importance sampling ( De Maio et al., 2015; Kuhner, 2008; Kuhner 

et al., 1995 ). These approaches, while readily able to account for 

genealogical uncertainty, can be complex or difficult to implement 

( Kim et al., 2015 ). 

The motivation for our work is most similar to that of 

Palacios and Minin (2012) . They presented a non-parametric tech- 

nique for fixed genealogies aimed at replacing MCMC approaches. 

Their method traded a little accuracy to achieve large computa- 

tional accelerations relative to existing MCMC techniques. We also 

assume a fixed genealogy in our work but instead focus on analyt- 

ical tractability and statistical efficiency (minimising mean squared 

error). The method we will introduce avoids the need to specify 

and modify MCMC operators, as found in the phylodynamic in- 

ference software BEAST ( Drummond et al., 2002 ), and related ap- 

proaches. 

In this paper, we introduce and analyse the Snyder filter 

( Snyder, 1972 ), a technique from electrical and systems engineer- 

ing, as a means of achieving the aforementioned inference goals. 

The Snyder filter is an explicit, parametric, Bayesian inference tech- 

nique that solves dynamical equations for the joint posterior dis- 

tribution of � x . These equations can then be used to obtain a con- 

ditional mean estimator that minimises the mean square error be- 

tween the true parameter (or function) and its estimate. The Sny- 

der filter is unlike other existing Bayesian methods for coales- 

cent inference because it directly computes the posterior distri- 

bution, given a model and priors. We show how the Snyder fil- 

ter, which treats coalescent data as a point process stream, can be 

used as an alternative and useful Bayesian estimator. The Snyder 

filter has remained largely unknown to the biological sciences and, 

to our knowledge, has only been applied to neuronal spiking by 

Bobrowski et al. (2008) and to invertebrate visual phototransduc- 

tion by Parag (2014) . 

We start by defining the Snyder filter and provide its equations 

for the estimation of random variables embedded within the self- 

exciting rate of a point process. We then demonstrate how the 

deterministically time-varying coalescent process can be reinter- 

preted so that it is amenable to Snyder based inference and de- 

scribe how to incorporate heterochronous sampling. Next we show 

that when population size is constant (the Kingman coalescent) 

then the filter can be solved analytically. From these equations, 

we recover the known maximum likelihood estimator of the King- 

man coalescent and we derive an approximate, explicit minimum 

mean square error (MMSE) function. We also provide a measure 

of robustness of the Snyder filter to prior specification. This com- 

pletes our theoretical treatment of the Snyder filter approach. We 

subsequently explore and quantify the performance of the Snyder 

filter by applying it to (i) data simulated under several canoni- 

cal, deterministically time-varying, epidemiologically relevant de- 

mographic models and (ii) a well-studied empirical dataset com- 

prising hepatitis C virus (HCV) gene sequences from Egypt. This 

HCV dataset has been widely used in previous studies and thus 

allows us to compare our method with previous approaches. In 

the appendices we give other formulations of the general Snyder 

filter, examine its computational performance and, for the King- 

man coalescent, reiterate the link between sequential data from 

a single tree and parallel data from many trees. We also present 

an informative relation between the Snyder filter approach and a 

popular non-parametric coalescent inference technique called the 

classic skyline plot ( Pybus et al., 20 0 0 ). We prove that the Snyder 

filter naturally generalises the skyline in a non-linear parametric 

manner. Furthermore, we show that the likelihood being implicitly 

optimised by the Snyder filter is equivalent to the standard coa- 

lescent likelihood from the literature for any deterministically time 

varying demographic model. 

2. Methods 

2.1. The Snyder filter 

Consider a Poisson process, u ( t ), at time t ≥ 0 with instanta- 

neous intensity λ(t, � x (t)) on the space of non-negative real num- 

bers. The function u ( t ) is an integer valued process that counts the 

number of points at t . The vector � x (t) is called the information 

process and is what we want to infer ( Section 2.2 will show that 

this process encodes the parameters of a coalescent demographic 

function). If � x (t) is stochastic then u ( t ) is a doubly stochastic Pois- 

son process (DSPP). Let the counting process stream from time 0 

to time t be denoted u t = u (s ) , ∀ s : 0 ≤ s ≤ t . In 1972 Snyder in- 

troduced an exact Bayesian filter for the optimal, causal estima- 

tion of this stochastic hidden information process � x (t) given only 

observations of u t and the basic statistics of � x (t) ( Snyder, 1972 ). 

We call this the Snyder filter in this work. The Snyder filter is a 

set of non-linear differential equations on the probability distribu- 

tion of � x (t) which, when solved across u t , lead to the causal pos- 

terior P ( � x (t) | u t ) . We assume that we observe (without ambigu- 

ity) a known function of u ( t ), which we write as F(t) and refer to 

as the observation process. Consequently P ( � x (t) | u t ) = P ( � x (t) | F t ) . 
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