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A B S T R A C T

In the “nest site lottery” mechanism, newborns form a pool of candidates and randomly drawn candidates
replace the dead adults in their nest sites. However, the selection process has only been analyzed under the
assumption of an equilibrium population size. In this study, we extend this model to cases where the population
size is not at an equilibrium, which yields a simplified (but fully mechanistic) biphasic population growth model,
where the suppression of growth is driven only by the availability of free nest sites for newborns. This new
model is free of the inconsistency found in the classical single phase models (such as the logistic model), where
the number of recruited newborns can exceed the number of free nest sites. We analyzed the stability of the
stationary density surfaces and the selection mechanisms for individual strategies described by different vital
rates, which are implied by the new model.

1. Introduction

1.1. Problem of growth limitation

The problem of limited population growth is a crucial question in
theoretical ecology. The first attempt to provide a mathematical
description of this problem (and the main theoretical approach found
in current textbooks) was the logistic equation introduced by Verhulst
(1838), but this approach was criticized for producing paradoxical
predictions (e.g., the possibility of escape to infinity for negative growth
rates, called Levin's paradox (Kuno, 1991; Ginzburg, 1992)). Density-
dependent growth suppression is related to a crucial question in
evolutionary biology regarding the definition of fitness and its mea-
sures (Metz, 2008; Kozłowski, 1993; Mylius and Diekmann, 1995;
Brommer, 2000; Dieckmann and Metz, 2006; Roff, 2008; Metz et al.,
2008a, 2008b). The first model of the selective properties of limited
population growth, which was inspired by the logistic model, was the
influential concept of r and K selection introduced by MacArthur and
Wilson (1967). Later, this concept was criticized for being too
simplified and for producing incorrect predictions (Barbault, 1987;
Getz, 1993; Stearns, 1977), it was replaced by the more detailed and
precise life history theory (Stearns, 1992; Roff, 1992). In addition, it
was shown that the classical logistic model also yields paradoxical and
misleading predictions in selection models (Argasinski, 2008).
However, similar to the concepts underlying the r and K selection

theory, the intuition that the selection rules are different for suppressed
and unsuppressed growth still seems to be reasonable. However, it
should be described using a more precise and mechanistic conceptual
framework instead of an abstract phenomenological logistic model. The
disadvantage of the logistic model is that this approach does not
consider the turnover of individuals. An approach that is free of the
disadvantages of the classical logistic growth was given by Kozłowski
(1980), Łomnicki (1988); Ginzburg (1992) and Gabriel et al. (2005).
This approach was applied to derive a more realistic evolutionary game
theoretic framework (Argasinski and Broom, 2013a), where payoffs are
expressed as demographic parameters. In this model, only the birth
rate is under suppression, which leads to the following equation:

n n b n K ḋ = [ (1 − / ) − ]. (1)

We can also consider the discrete version

n t n t n t b n K d( + 1) − ( ) = ( )[ (1 − / ) − ], (2)

where n(t) is the population size (or concentration) at time t, b and d
are the birth and death rates, and K is the maximal population load
(Hui, 2006, 2015), which can be interpreted as the number of nest sites
in the environment. This implies that n K∈ [0, ]. In addition, instead of
an arbitrarily selected carrying capacity, the dynamics converge to a
dynamic equilibrium between mortality and fertility n d b K= (1 − / )∼ .
This is similar to the emerging carrying capacity concept found in
epidemiological models (Bowers et al., 2003; Sieber et al., 2014). Thus,
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in the framework presented above, the term n K(1 − / ) can be clearly
interpreted as juvenile survival, which depends on the number of
available nest sites. Therefore, a question arises regarding the form of
juvenile survival n K(1 − / ) if we assume that nest sites for newborns are
the limiting factor. Should this be a simple linear function of the
fraction of free nest sites n K(1 − / ), or something more complicated?
The function n K(1 − / ) causes problems in the discrete model (2), e.g.,
the trajectory can escape from the interval K[0, ].

Therefore, the present study provides a mechanistic derivation of a
function to describe how juvenile survival is determined by the
availability of nest sites for newborns. This more realistic function
can replace the term n K(1 − / ) in (2). The underlying basic principles
are explained in the “nest site lottery” selection model Argasinski and
Broom (2013b).

1.2. “Nest site lottery” model of Argasinski and Broom

The general selective properties of (1) were analyzed by Argasinski
and Broom (2013b). The model is based on the following system of
differential equations describing the selection of strategies with ferti-
lities bi and mortalities di.

n n b n K ḋ = [ (1 − / ) − ].i i i i (3)

It has been shown that the system above converges to a stable density
surface (Cressman et al., 2001; Cressman and Garay, 2003):

n d q
b q

K= 1 − ( )
( )

,
⎛
⎝⎜

⎞
⎠⎟ (4)

where q n n= / ∑i i j j, d q qd( ) = ∑i i i, and b q qb( ) = ∑i i i. When this occurs,
the growth limitation driven by juvenile recruitment survival induces
the “nest site lottery” mechanism.

Thus, when the population reaches the stable density surface, the
manifold where there is a balance between mortality and fertility
(Cressman et al., 2001; Cressman and Garay, 2003), then all of the
newborns introduced into the population at the same time will form the
pool of candidates for recruitment. Recruited newborns that will
replace adult individuals dying within a short time interval in the nest
sites released by them are drawn from the pool of candidates. We note
that by adding to the nest site lottery mechanism's assumption that
mortalities d ξ=i do not differ for all strategies and that they are
sufficiently low to allow the separation of timescales between fertility
and mortality, then we obtain the assumptions that underlie the
derivation of the Moran process. In this special limiting case, the
newborn candidates will compete for a single nest site released by a
dead adult. However, for the general case described by Argasinski and
Broom (2013b), it has been shown that the selection of strategies can
be described by the following replicator dynamics model derived from
system (3) and expressed as the relative frequencies qi:

q q b d q
b q

ḋ = ( )
( )

− .i i i i
⎛
⎝⎜

⎞
⎠⎟ (5)

System (5) can be presented in terms of the turnover coefficient
L b d= /i i i and L q b q d q( ) = ( )/ ( ) (Argasinski and Broom, 2013b). The
parameter L describes the number of newborns that replace a single
dead adult individual, which leads to the following form of (5):

q qd
L

L q
̇ =

( )
− 1 .i i i

i⎛
⎝⎜

⎞
⎠⎟ (6)

From the bracketed term L L q( / ( ) − 1)i , we find that qi increases when
L L q> ( )i . Thus, the system above shows that the “nest site lottery”
leads to the fixation of the individuals with the maximal parameter Li,
which is caused by the bracketed term L L q( / ( ) − 1)i . In a monomorphic
population, the mutant with a greater value of Li will win, which is
equivalent to maximizing the lifetime reproductive success R0, a well-
known fitness measure in life history theory (Stearns, 1992; Roff,

1992). However, if we assume a polymorphic population, the same
value of Li can be obtained for different values of di and bi. Thus, it is
possible that several different strategies with the maximal Li will be
present at the rest point of (6). However, they are not equivalent
because they will have different values for di, which appears on the
right-hand side of equation (6). L-maximizing individuals will have the
same value for the term L L q( / ( ) − 1)i , and thus, those with the greatest
growth rate will also have the highest mortality rate di. Then, every
perturbation of the system (a decrease in the population size or
invasion by mutants with a smaller value for Li) will lead to a
significant increase in the frequency of the d-maximizing strategy from
the class of L-maximizers (so the model will describe a single round of
selection between perturbation events). Thus, in the long term with
many perturbations, this strategy will outcompete the other L-max-
imizing strategies. Therefore, those with the shortest life-span will win
among the life history strategies with the maximal Li. These results
suggest that the growth-limiting mechanism based on juvenile recruit-
ment survival will affect the selection process because it transforms the
maximization of the growth rate into a double staged process compris-
ing the maximization of Li and the maximization of di among the
strategies with the maximal Li (Argasinski and Broom, 2013b).

1.3. Universality and independence of the underlying suppression
factors in the “nest site lottery” mechanism

However, the model presented by Argasinski and Broom (2013b)
provides a clear mechanistic explanation only in the case where the
population state is close to equilibrium (4). The problem is that system
(5) was obtained based on a system of equations of type (1), where
juvenile survival is described by the term n K(1 − / ). Deviation from the
population size equilibrium changes juvenile survival from
d q b q( )/ ( ) into the abstract phenomenological factor n t K(1 − ( )/ ).
However, the equality of this factor to the fraction of free nest sites is
not justified by any interpretation. In Argasinski and Broom (2013b), it
was shown that the mechanism described by system (5) is universal for
all decreasing juvenile survival functions u(n). For every system of
equations of type n n b u n ḋ = [ ( ) − ]i i i i , the general population size can be
described by the equation n n b q u n d q̇ = [ ( ) ( ) − ( )] leading to the stable
density manifold n u d q b q= ( ( )/ ( ))∼ −1 , which can differ significantly from
(4) depending on the form of u(n). Thus, at equilibrium manifold,
juvenile survival will be equal to d q b q( )/ ( ), which is the basis of system
(5). Therefore, we can obtain the recruitment lottery mechanism for
every decreasing juvenile survival function u(n), regardless of the form of
u(n). We note that since r b u n d d L u n= ( ) − = ( ( ) − 1)i i i i i , then reduction
of the population size caused by periodic disasters leads to the long term
di maximization among L-maximizers. Possible errors in the factor u(n)
will only affect the equilibrium population size n u d q b q= ( ( )/ ( ))∼ −1 . Thus,
a question arises regarding the situations where the assumption about
the balance between mortality and fertility does not hold, but a shortage
of nest sites occurs. To answer this question, we need a mechanistic
juvenile survival function that accurately describes the impact of the
shortage of nest sites. Based on the nest site lottery, this should depend
on the number of newborn candidates rather than only the adults. This
problem is the focus of the current paper.

2. Results

Let us introduce an alternative population growth model where
density-dependent suppression is driven by the availability of free nest
sites for newborns introduced into the environment. The new model is
biphasic and suppression starts when the number of newborns exceeds
the number of free nest sites. For simplicity, we assume that no other
mortality factors affect juvenile recruitment. We demonstrate the
dynamic stability and selective properties of our model. We use a
discrete approach because it is easier to interpret the parameters.
Table 1 contains the list of important symbols.
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