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a b s t r a c t 

Many biological environments display an almost radially-symmetric structure, allowing proteins, cells or 

animals to move in an oriented fashion. Motivated by specific examples of cell movement in tissues, pig- 

ment protein movement in pigment cells and animal movement near watering holes, we consider a class 

of radially-symmetric anisotropic diffusion problems, which we call the star problem . The correspond- 

ing diffusion tensor D ( x ) is radially symmetric with isotropic diffusion at the origin. We show that the 

anisotropic geometry of the environment can lead to strong aggregations and blow-up at the origin. We 

classify the nature of aggregation and blow-up solutions and provide corresponding numerical simula- 

tions. A surprising element of this strong aggregation mechanism is that it is entirely based on geometry 

and does not derive from chemotaxis, adhesion or other well known aggregating mechanisms. We use 

these aggregate solutions to discuss the process of pigmentation changes in animals, cancer invasion in 

an oriented fibrous habitat (such as collagen fibres), and sheep distributions around watering holes. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Movement of biological particles, whether molecules, cells or 

organisms, is heavily dictated by their environment. We explore 

the impact of oriented environments, where a particle’s motion is 

influenced by the anisotropic nature of its surroundings. Examples 

cover a broad range of biological scales: within single cells, the 

structured cytoskeleton offers a transport system for efficient shut- 

tling of molecules and organelles ( Alberts et al., 2014 ); in tissues, 

cell migration and consequently tumour invasion can be facilitated 

by movement along collagen fibres, neuronal axons and capillaries 

( Gritsenko et al., 2012 ); at a landscape level, animals often follow 

(or avoid) paths, roads and other linear structures ( Brown et al., 

20 06; James and Stuart-Smith., 20 0 0; McKenzie et al., 2012 ). Ori- 

ented environments may also have less manifestly physical forms: 

chemicals, the geomagnetic field, sound, visual cues and many 

other factors can present orientating information. 
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In Hillen et al. (2013) we termed the fully anisotropic diffusion 

equation as the linear parabolic equation 

u t = ∇∇ : (D (t, x ) u ) = 

n ∑ 

i, j=1 

∂ 

∂x i 

∂ 

∂x j 

(D 

i j (t, x ) u ) (1.1) 

on a bounded or unbounded domain in R 

n , equipped with appro- 

priate boundary conditions. The tensor D (t, x ) = (D 

i j (t, x )) i, j de- 

scribes anisotropic diffusion, in which diffusive spread is distinct 

along different axial directions. This model arises as a description 

for particle movement in terms of their macroscopic density u ( t , 

x ): models similar to (1.1) have been used to explain cell migra- 

tion along collagen fibres (see Hillen, 2006 ) and the invasion of 

glioma (brain tumour) cells along neural fibre tracts (see Engwer 

et al., 2015; Painter and Hillen, 2013 ); for animal populations, they 

have been used to describe wolf movement along linear features 

in boreal habitats ( Hillen and Painter, 2013; McKenzie et al., 2009; 

2012 ), sea turtle navigation ( Painter and Hillen, 2015 ) and butter- 

fly movement ( Painter, 2014 ). The wolf movement problem led to 

the specific exploration into the dynamics of (1.1) under a math- 

ematically convenient straight-line structure, such as a road: the 

population is shown to accumulate onto the line and, under cer- 

tain limiting scenarios, solutions blow up in infinite time ( Hillen 

et al., 2013 ). 
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Fig. 1. Left: schematic of the anisotropy of the star problem. Right: sketch of mov- 

ing particles in the star domain. 

A second logical abstraction is to assume radially-aligned orien- 

teering information. With respect to earlier examples, cytoskeletal 

microtubules are arranged into spokes radiating from the cell nu- 

cleus (or other organising centres) ( Alberts et al., 2014 ); radially- 

aligned collagen fibres can be found in both healthy and patho- 

logical scenarios, such as emanating from the nipple of mammary 

tissue or oriented orthogonally to the tumour boundary in malig- 

nant breast tumours ( Provenzano et al., 2006 ); at a landscape scale, 

animal trails radiate from waterholes in arid environments ( Lange, 

1969 ). The star problem investigated here emerges as an idealised 

description of movement along (or perpendicular to) radial lines 

that converge on some origin, under assumed radial symmetry. 

Given a planar polar coordinate system ( r, φ), where for each point 

the direction away from the origin will be given by radial unit vec- 

tor (cos φ, sin φ), and assuming that movement is aligned radially, 

the fully anisotropic diffusion problem (1.1) is shown to have dif- 

fusion tensor 

D (r, φ) 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 − α(r) 

2 

I 2 + α(r) 

( 

cos 2 φ sin φ cos φ

sin φ cos φ sin 

2 φ

) 

if r � = 0 

1 

2 

I 2 if r = 0 

. (1.2) 

For now we simply state | α( r )| ≤ 1 to be a given function that de- 

scribes the precision to which movement along the radial direction 

(positive α) or perpendicular to it (negative α) is maintained. Ra- 

dially symmetric solutions to (1.1) under (1.2) are then found to be 

determined by the star problem, 

∂u (r, t) 

∂t 
= 

1 

2 

(
(1 + α(r)) u 

)
rr 

+ 

1 

2 r 

(
(1 + 3 α(r)) u 

)
r 
, (1.3) 

on the interval (0, R ] (where R is potentially infinity), under suit- 

able boundary and initial conditions ( Fig. 1 ). We explore whether 

the Eq. (1.3) is capable of creating aggregative behaviour, whether 

blow-up is possible and whether this blow-up occurs in finite 

or infinite time. For 0 ≤ α ≤ 1 we show that solutions to Eq. 

(1.3) contain a leading order term of the form 

c 

r 2 α/ ( α+1 ) 
. (1.4) 

In particular, when α = 0 we obtain constant solutions and for 

α = 1 we observe a 1/ r singularity at 0. The latter implies that so- 

lutions to the star problem have the potential to instantly blow up, 

representing a “strong aggregation” at the origin. This arises purely 

from the underlying structure of the environment and hence is dis- 

tinct from the typical aggregations associated with a process such 

as chemotaxis. For orientation along radial circles (perpendicular 

to radial directions, −1 ≤ α < 0 ) aggregation does not occur and 

solutions to (1.3) remain bounded for all time. 

1.1. Outline 

In the following Section 2 we systematically motivate Eq. 

(1.3) as an idealised description for movement of biological par- 

ticles in radially symmetric oriented environments. Starting with 

a transport equation for the aligned movement of particles, we 

state the macroscopic continuous drift-anisotropic diffusion equa- 

tion obtained under scaling. Eq. (1.3) subsequently emerges follow- 

ing the transformation to polar coordinates and assuming radial 

symmetry. Specific examples are provided within the context of 

organelle transport along microtubules, cell movement along col- 

lagen fibres and animal movement along the trails that surround 

water holes. For the special case of constant α, the resulting sin- 

gular Sturm–Liouville problem is solved in Section 3.3 . The lead- 

ing order term in this solution is derived and we use Section 4 to 

compare numerical solutions of (1.2) to the asymptotic formula, as 

well as demonstrate the utility of the model in applications. We 

conclude with a discussion of the results in the context of our mo- 

tivating examples. 

2. Derivation and motivations 

Velocity-jump random walk models ( Othmer et al., 1988 ) de- 

scribe movement as a piecewise-continuous path of smooth runs 

punctuated by turns into new velocities. As such they provide a 

plausible approximation of actual movement paths and can be pa- 

rameterised against standard datasets. The transport equation is 

the corresponding continuous description for this process and, in 

a series of papers ( Hillen, 2006; Hillen and Othmer, 2000; Hillen 

and Painter, 2013; Othmer and Hillen, 2002 ), it is shown how first 

choosing a distribution where turns are biased into specific ax- 

ial directions and then taking a course-grain limit leads to the 

anisotropic diffusion formulation (1.1) , with appropriate diffusion 

tensor D . 

2.1. Transport equations to anisotropic diffusion 

The transport equation postulates the time evolution of the par- 

ticle population distribution, p ( t , x, v ), parameterised by time t ∈ 

[0, ∞ ), position x ∈ � ⊂ R 

n and velocity v ∈ V ⊂ R 

n . Here, turning 

is chosen to be (effectively) instantaneous and the new velocity is 

assumed to not depend on the previous velocity, yielding 

p t (t, x , v ) + v · ∇p(t, x , v ) = −μp(t, x , v ) + μq (t, x , v ) u (t, x ) , 

(2.5) 

where u (t, x ) = 

∫ 
V p(t, x , v ) dv is the macroscopic (or observable) 

particle density. q ( t , x, v ) describes the turning distribution, i.e. the 

probability that a particle turns into velocity v at time t and po- 

sition x . The parameter μ measures the turning rate and is taken 

here to be constant. We also simplify by assuming that the par- 

ticles move with a fixed mean speed s and, consequently, trivial 

rescaling allows us to set s = μ = 1 (and subsequently drop these 

notations). Hence V ≡ S 
n −1 (the unit sphere) and q ( t , x, v ) becomes 

a directional distribution on the unit sphere, ∫ 
S n −1 

q (t, x , v ) dv = 1 . 

In fact, an equation similar in form to (2.5) was used in Painter 

(2009) to model cell migration along collagen fibres. There, ra- 

dial fibre arrays were shown to generate focussed aggregations 

at the origin, suggesting that oriented environments could act to 

spatially organise populations. Those simulations partially moti- 

vate the current work, where a more detailed investigation is con- 

ducted through exploring the macroscopic version. This macro- 

scopic model can be obtained through moment closure techniques 
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