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a b s t r a c t 

Cell migration within tissues involves the interaction of many cells from distinct subpopulations. In this 

work, we present a discrete model of collective cell migration where the motion of individual cells is 

driven by random forces, short range repulsion forces to mimic crowding, and longer range attraction 

forces to mimic adhesion. This discrete model can be used to simulate a population of cells that is com- 

posed of K ≥ 1 distinct subpopulations. To analyse the discrete model we formulate a hierarchy of mo- 

ment equations that describe the spatial evolution of the density of agents, pairs of agents, triplets of 

agents, and so forth. To solve the hierarchy of moment equations we introduce two forms of closure: 

(i) the mean field approximation, which effectively assumes that the distributions of individual agents 

are independent; and (ii) a moment dynamics description that is based on the Kirkwood superposition 

approximation. The moment dynamics description provides an approximate way of incorporating spatial 

patterns, such as agent clustering, into the continuum description. Comparing the performance of the two 

continuum descriptions confirms that both perform well when adhesive forces are sufficiently weak. In 

contrast, the moment dynamics description outperforms the mean field model when adhesive forces are 

sufficiently large. This is a first attempt to provide an accurate continuum description of a lattice-free, 

multi-species model of collective cell migration. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In vivo cell migration involves many different cell types inter- 

acting with each other. For example, tumour invasion involves ma- 

lignant cancer cells moving through normal surrounding tissues 

( Weinberg, 2009 ). Interactions between different cell types are also 

captured in certain in vitro experiments, such as the migration of 

malignant melanoma cells, which is thought to be enhanced when 

these cells are moving amongst skin cells ( Eves et al., 2003 ). Multi- 

ple species of cells can also be created in experiments where some 

subpopulation of cells, amongst an otherwise identical subpopu- 

lation, are labelled and tracked over time ( Simpson et al., 2006, 

2007 ). While some mathematical models explicitly account for in- 

teractions between different subpopulations of cells ( Painter and 

Sherratt, 2003 ), most mathematical models deal with a single pop- 

ulation of cells only ( Maini et al., 2004; Sherratt and Murray, 1990 ). 

A common approach to modelling cell migration is to use a 

lattice-based random walk model. This approach captures details 

of the motion of individual cells, which is attractive because this 
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kind of information can be linked to time lapse images from ex- 

periments. The continuum-limit description of such a lattice-based 

model can also be used to study the group behaviour. Although 

some previous lattice-based models account for interactions be- 

tween different types of cells ( Penington et al., 2011; Simpson 

et al., 2009 ), these lattice-based models are unrealistic because real 

cells do not move on regular lattice-based structures. Other limita- 

tions of lattice-based models include restrictions on cell size. For 

example, the diameter of a typical melanoma cell is approximately 

18 μm ( Treloar et al., 2013 ) whereas the diameter of a typical skin 

cell is approximately 25 μm ( Simpson et al., 2013 ). In a model with 

both types of cells present, it is not possible to accommodate these 

differences in cell size if we use a standard lattice-based approach 

where each cell occupies a single lattice site ( Binder and Simp- 

son, 2016 ). 

To address these limitations, we define a lattice-free model that 

can be used to describe the migration of a population of cells that 

is composed of many potentially distinct subpopulations. We adopt 

a modelling framework that is an extension of previous approaches 

by ( Newman and Grima, 2004 ) and Middleton and co-workers 

(2014). The work by Newman and Grima considered a stochastic 

model of individual cell migration, with chemotactic effects, and 
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they described the continuum limit using a Langevin formulation. 

The work of ( Newman and Grima, 2004 ) was then extended by 

Middleton and co-workers (2014) who also considered a stochastic 

model of individual cell migration in terms of a Langevin for- 

mulation, however they considered both a traditional mean field 

continuum approximation as well as a more sophisticated moment 

closure continuum approximation that accounts for the spatial 

and temporal dynamics of pairs of agents. A key feature of both 

these previous models is that they are appropriate for studying 

the collective migration of a single populations of cells. However, 

many practical problems in development and disease progression 

involves multiple interacting subpopulations of cells. Therefore, 

the main aim of the current study is to develop a discrete model 

of collective migration where the total population of cells consists 

of an arbitrary number of interacting subpopulations. Our discrete 

model incorporates random cell motility, adhesion between cells 

and finite size effects (crowding). We allow for differences in cell 

size, cell motility and cell adhesion between the different sub- 

populations. In addition to producing stochastic realisations of the 

discrete model, we also analyse the continuum limit using both 

a standard mean field approximation and a more sophisticated 

moment dynamics approximation. Comparing averaged behaviour 

from the discrete simulations with the solution of the continuum 

models confirms that the mean field approach can be inaccurate 

when adhesion is sufficiently strong. This is important because 

almost all mathematical models of collective cell migration invoke 

the mean field approximation ( Maini et al., 2004; Painter and 

Sherratt, 2003; Sherratt and Murray, 1990 ). 

This manuscript is organised in the following way. In 

Section 2 we describe the discrete model. In Section 3.1 , we anal- 

yse the discrete model, showing how we can obtain a continuum 

description of the average behaviour of the discrete model. In par- 

ticular, we focus on two different continuum descriptions: (i) a 

mean field approximation; and (ii) a higher-order moment dynam- 

ics approximation. Results in Sections 3.2 –3.3 compare solutions of 

both continuum approximations and averaged discrete results for 

problems involving one and two interacting subpopulations, with 

additional comparisons presented in the Supplementary Material. 

In Section 3.4 we investigate how the accuracy of the MFA and 

KSA approximations depends on the choice of model parameters. 

Finally, in Section 4 , we summarise our work and highlight oppor- 

tunities for future investigation. 

2. Discrete model 

We consider a population of N cells that is composed of an 

arbitrary number of subpopulations, K ≥ 1. Illustrative schemat- 

ics showing interactions between individuals in a population with 

K = 1 and K = 2 subpopulations are given in Fig. 1 (a) and (b), re- 

spectively. 

We begin by assuming that each individual cell is a point mass 

and that its movement can be described by an equation of motion. 

For simplicity, from this point on, we restrict our attention to a 

one-dimensional geometry, and in Section 4 we discuss how the 

framework can be adapted to higher dimensions. To begin describ- 

ing the collective motion, we assume that the motion of each cell 

is governed by Newton’s second law, 

m i 

d 

2 x i 
d t 2 

= V i + 

∑ 

j � = i 
R i j + ζi , i = 1 , . . . , N, (2.1) 

where x i is the position of the i th cell, m i is its mass, and R ij is 

an interaction force between the i th and j th cells. V i is the viscous 

force between the cell and the surrounding medium, and ζ i is the 

stochastic force associated with random Brownian motion. Accord- 

ing to Stokes’ law, the viscous force on a small spherical particle 

Fig. 1. (a) and (b) Representative plot of single- and multi-species systems of cells, 

respectively. In (a) we show the intraspecies force, F ( r ), and in (b) we show both 

intraspecies forces, F 11 ( r ) and F 22 ( r ), and interspecies forces, F 12 ( r ) and F 21 ( r ). Here, 

r is the distance between cells. (c) Dimensionless force law function Z(r) , given 

by Eq. (2.5) , for various values of a . Here, δ = 25 μm corresponds to a typical cell 

diameter. 

moving in a viscous fluid is given by 

V i = −μ
d x i 
d t 

, (2.2) 

where μ > 0 is the drag coefficient. If we neglect inertial forces and 

invoke Stokes’ law ( Middleton et al., 2014 ), we arrive at a system 

of Langevin stochastic differential equations (SDEs) given by 

d x i 
d t 

= 

∑ 

j � = i 
F i j + ξi , i = 1 , . . . , N, (2.3) 

where R i j = μ F i j and ζi = μ ξi . 

In summary, according to Eq. (2.3) , the collective migration 

of cells is determined by a balance between cell-to-cell interac- 

tions (short-range crowding and longer range adhesion), stochastic 

forces, and viscous forces. Collective cell migration that is driven 

by unbiased stochastic forces is thought to be relevant in many ap- 

plications, such as collective cell spreading in many single-species 

in vitro experiments ( Simpson et al., 2013 ). Therefore, we focus on 

unbiased stochastic forces by sampling ξ i from a Gaussian distri- 

bution with zero mean and zero auto-correlation ( Middleton et al., 

2014 ). 

It is biologically reasonable to model the interaction forces be- 

tween cells, F ij , to have different amplitudes for subpopulations of 

cells. This is relevant if we wish to specify different adhesion forces 

between different subpopulations ( Steinberg, 1996 ). For simplicity, 

we assume F i j = F ji , and we specify the interaction force to be 

F i j = f 0 Z(r) sgn (x i − x j ) , (2.4) 

where f 0 is the dimensional amplitude of the interaction force, 
Z(r) is the dimensionless force law function that depends on 

the separation distance, and r = | x i − x j | . The function sgn is 
the signum function. The particular choice of Z(r) depends on 

phenomenological cellular behaviour we wish to model. Several 
force laws have been suggested, including a linear spring model 
( Murray et al., 2009 ) and non-linear force laws such as Morse 
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