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A B S T R A C T

Game theory focuses on payoffs and typically ignores time constraints that play an important role in
evolutionary processes where the repetition of games can depend on the strategies, too. We introduce a matrix
game under time constraints, where each pairwise interaction has two consequences: both players receive a
payoff and they cannot play the next game for a specified time duration. Thus our model is defined by two
matrices: a payoff matrix and an average time duration matrix. Maynard Smith's concept of evolutionary
stability is extended to this class of games.

We illustrate the effect of time constraints by the well-known prisoner's dilemma game, where additional
time constraints can ensure the existence of unique evolutionary stable strategies (ESS), both pure and mixed,
or the coexistence of two pure ESS.

Our general results may be useful in several fields of biology where evolutionary game theory is applied,
principally in ecological games, where time constraints play an inevitable role.

1. Introduction

Every interaction takes time. In classical economical and evolu-
tionary game theory, the time durations of different interactions are not
widely considered. However, in ecology, activity-dependent time con-
straints are important. For instance, Holling-type functional response
(Holling, 1959) takes into account that the number of active predators
is less than their total number, since after a successful attack predators
have to handle and digest their prey before they continue hunting.
Moreover, in optimal foraging theory (Charnov, 1976a,b), in ecological
games on kleptoparasitism (Broom et al., 2008, 2009; Broom and
Ruxton, 1998; Broom and Rychtář, 2013; Sirot, 2000), and in the
dispersal-foraging game (Garay et al. 2015a,b), time constraints have
an essential effect on optimal behavior. Thus our main question arises:
What is the effect of time constraints on the concept of evolutionary
stability in games within one species?

Our question is motivated by the following lines of research. Our
primary motivation originates in ecological games with time con-
straints describing the complex phenomenon of kleptoparasitism
(e.g., Broom et al., 2008, 2009; Broom and Ruxton, 1998; Broom
and Rychtář, 2013; Sirot, 2000). The overwhelming majority of models
on kleptoparasitism consider polymorphic populations
(Hadjichrysanthou and Broom, 2012). The aim of this paper is to
adapt Maynard Smith's standard concept of evolutionary stability to

matrix games with time constraints in a monomorphic population.
Our secondary motivation comes from the classical prisoner's

dilemma (PD) game, where cooperation can be achieved by taking
account of some extra specific mechanism (e.g., Nowak, 2006; Nowak
and May, 1993; Santos et al., 2006; Szabó and Fáth, 2007; Szabó et al.,
2005). Notice however that the original payoffmatrix of the PD game is
given by time (term of imprisonment, while the prisoner cannot go out
to rob). It is natural to ask whether the evolutionary stability of
cooperation can be achieved by suitable time constraints. According
to our knowledge, this is the first attempt to investigate the effect of
time constraint in the PD.

To answer our main question, we introduce matrix games under
time constraints, in which the players must wait after each interaction
before they engage in the next one, and these waiting times depend on
the pure strategies followed by the players. Then we conceive the
definition of ESS for this class of games. First, we derive formulas for
the players’ average payoff via heuristic calculation under two assump-
tions, then we introduce an exact mathematical model, where those
requirements are met and the heuristic calculations get justified with
rigorous proofs. For that we assume that the waiting times are
exponentially distributed, thus we can use the standard method of
continuous time Markov processes to describe the stationary state of
the population (cf. Broom et al., 2010; Yates and Broom, 2007).
However, we emphasize the possibility that other, non-Markovian
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models could also satisfy our assumptions, and the heuristic calcula-
tions would remain valid for them.

We were also motivated by the “dynamical linking” model by
Pacheco et al. (2006a,b), where the number of repetitions of the
interactions between two individuals depends on the payoff from the
given interaction. That pair forming process modifies one of the basic
assumptions of classical evolutionary games, namely, the randomness
of interactions between players, since the connections between differ-
ent phenotypes have different repetition numbers. In contrast, our
model keeps the randomness of the pair forming process at each
interaction, and after the interaction players have to wait before they
get ready for the next interaction. We emphasize that both models have
the same consequence: the average interaction rates between different
phenotypes are not proportional to the relative frequencies of pheno-
types, unlike in classical evolutionary games.

Finally, we apply our general results in the following two cases. In
the introduced prisoner's sharing game, the time constraints are given
by the matrix of the prisoner's dilemma and the payoff matrix defines
how the fraternal sharing is distorted by a symmetric zero-sum
component with a strength of s that favors mutual cooperation if
s > 0. When increasing s, first the defector, then a mixed strategy, and
finally the cooperator is the unique evolutionarily stable strategy. In the
second case, the prisoners' dilemma occurs for the payoffmatrix. As the
average time duration of defector strategy increases, first the defector is
the unique evolutionarily stable strategy, after that the game becomes
bistable, and finally the cooperator is the unique evolutionarily stable
strategy.

2. A heuristic calculation of evolutionary stability

We consider pairwise interactions having different time durations.
We have n pure strategies, and the phenotype is a probability
distribution p p p= ( , …, )n1

⊤ on these pure strategies. (Vectors are

meant as columns; ⊤ stands for transpose.) A matrix game under time
constraints is defined by the following parameters. If the focal
individual uses the i-th pure strategy and its opponent the j-th one,
the focal individual's payoff is aij, and the focal individual cannot play
the next game during an average time duration τ > 0ij . Thus, each
individual is either non-active or active; and only active individuals are
ready to play the next game round. Hence our game is characterized by
two matrices, the intake matrix A a= ( )ij n n× and the time constraint
matrix T τ= ( )ij n n× .

In our heuristic calculation of evolutionary stability, we strictly
follow Maynard Smith's (1982) monomorphic setup, as much as
possible. The population is assumed to be sufficiently large and the
generations do not overlap. All individuals can only differ in the
strategy p and all individuals are the same from all other points of
view of natural selection. Let us consider a resident population in
which every individual has a resident phenotype p*. Assume that
mutation is rare enough and denote by ε the relative frequency of
mutants. The rarity of mutation has two consequences: Firstly, the
relative frequency of mutants is small; secondly, the time between two
consecutive mutations is sufficiently long so that less fit phenotypes get
selected out by natural selection. Thus only one mutant and one
resident phenotype coexist at the same time. Then the relative
frequency of residents is ε ε* = 1 − . The interaction is well mixed:
each active individual finds another active individual uniformly at
random. Assume that the lifetime D of one generation is large enough
and individuals play the above game during the whole D.

After an individual finishes an interaction, it looks for an opponent
for the next interaction, which also takes time. The searching time
depends on the searching process. For instance, if active individuals A
and B are looking for opponents, and each of them covers the average
distance between them during τ0, then the encounter only takes time
τ τ= /2S 0 , since until the encounter both cover half the distance between
them. The same is true if the random searching times are independent

and exponentially distributed with equal means. In this case the
interaction can follow as a result of either participant's finding the
other one, hence the waiting time in fact is the minimum of two
exponentially distributed searching times with mean τ0, which is
exponential with mean τ /20 . By symmetry, at every encounter both
players must have the same probability to select and to be selected.

Of course, it can happen that a searching individual finds an
inactive one; in this case the searching period starts over. We will
term the time span between two searches (that is, τS plus the time of
interaction, when the searching individual finds an active opponent) a
turn of activity.

Our heuristic calculation is based on the following two assumptions.

Assumption 1. The population is in a stationary state, i.e., each
individual having the same phenotype possesses the same activity
distribution.

Assumption 2. The total intake of each phenotype is equal to the
average intake in its stationary state (cf. Luther and Broom, 2004).

In order to calculate the fitness of mutant and resident phenotypes,
we will consider a focal mutant, resp. a focal resident individual, who
plays against the whole population. Since the interaction is well mixed,
a focal individual (independent of its phenotype) has the following
encounter distribution based on the stationary state of the whole
population r ε r r ε r( , − , *, * − *), where r and r* are the relative
frequencies of active (interaction is possible) mutants and residents,
resp., while ε r− and ε r* − * are the relative frequencies of inactive
(interaction is not possible) mutants and residents, resp. We emphasize
that these proportions are defined by the stationary distribution, thus
ε ε r r, *, , * do not vary with time: the main point is that the state of the
population is aperiodic. Furthermore, the encounter distribution
depends on the phenotypes of resident and mutant.

Now, the time average of an arbitrary activity turn of a focal mutant
individual is

E τ rp Tp r p Tp= + + * *.p S
⊤ ⊤

Indeed, τS is the time to find the next opponent to play the game
against, r and r* are the probabilities that the focal mutant meets an
active mutant or an active resident individual in a stationary popula-
tion, respectively. Finally, p Tp⊤ resp. p Tp*⊤ is the average time
duration when the focal mutant plays the game with a mutant or a
resident opponent. Similarly, the time average of one turn of activity of
a focal resident is

E τ rp Tp r p Tp= + * + * * *.p S*
⊤ ⊤

The time constraint on interactions determines the average number of
interactions of individuals during the lifetime D of one generation, thus
the number of games played by the mutant and that by the resident
phenotype are defined as

G D
E

G D
E

≔ and ≔ ,p
p

p
p

*
*

respectively.
Since the interactions are well mixed during D (i.e., each individual

interacts with mutant and resident with probability r and r*, respec-
tively), each mutant individual has the following total average payoff:

G rp Ap r p Ap( + * *).p
⊤ ⊤

Indeed, here rp Ap r p Ap+ * *⊤ ⊤ is the average intake of the focal mutant
individual from one turn of interaction. Similarly, the total average
payoff of a resident individual is

G rp Ap r p Ap( * + * * *).p*
⊤ ⊤

Based on classical Darwinism, supposing that the mutant is rare
enough, the mutant phenotype is outperformed by the resident
phenotype if the fitness of the resident phenotype is higher than that
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