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A B S T R A C T

Kinetic-order sensitivity (the ratio of relative change in a dependent variable to the relative change in a kinetic
order in a power-law–type differential equation) has recently become an important indicator in metabolic
pathway analysis using mathematical models with parameter values determined from time-series data on
cellular metabolite concentrations. Here, we discuss a potential problem in calculating kinetic-order
sensitivities. When the steady-state metabolite concentration is less than unity, a slight increase in the kinetic
order changes the metabolite concentration in the incorrect direction, yielding a kinetic-order sensitivity value
with an incorrect sign. This is caused by a property of the power-law function (y=Xn): when X is less than unity,
y decreases for a larger positive n or for a smaller absolute value of negative n. We propose two solutions. The
first is to directly calculate the kinetic-order sensitivities and then reverse the sign of the relevant value if a
steady-state metabolite concentration less than unity is involved. The second involves calculation of the kinetic-
order sensitivities after setting all metabolite concentrations to values greater than unity (e.g., by changing the
units from mM to μM). The latter method changes the absolute values of the kinetic-order sensitivities
according to the magnitude of a multiplication factor, because kinetic-order sensitivities do not have unique
values. Nevertheless, since the normalized absolute values exhibit an almost identical distribution, it should not
be difficult to identify which kinetic order has greater effect, although kinetic order rankings may change slightly
under different calculation conditions.

1. Introduction

Recent developments in high-performance analytical instruments
have enabled comprehensive measurement of the time courses of
metabolite concentrations in cells (Fiehn, 2002; Weckwerth, 2003;
Schauer and Fernie, 2006; Sawada et al., 2009). Concordant with
advancements in metabolomics, methods for constructing a mathema-
tical model for a large-scale metabolic reaction system using time-
series data on metabolite concentrations are under development (Chou
and Voit, 2012; Heijnen and Verheijen, 2013; Voit, 2013; Sriyudthsak
et al., 2014a; 2014b). These methods make it possible to perform
computer simulations of metabolic reactions taking place in cells,
allowing researchers to comprehensively investigate the characteristics
of metabolic reaction systems, elucidate metabolic reaction phenom-
ena, and discover unknown interactions between distant metabolites
and enzymes. The analysis could also facilitate practical discussions of
metabolic reaction systems, such as the identification of bottleneck
enzymes to attain a higher yield of desired product (Sriyudthsak and

Shiraishi, 2010; Sriyudthsak et al., 2015).
Biochemical systems theory (BST) (Savageau, 1969; 1976) provides

a systematic tool for constructing a mathematical model in a given
large-scale metabolic reaction system, where the time course of each
metabolite concentration is expressed in terms of differential equations
consisting of power law-type flux equations that describe the interac-
tion between a metabolite and an enzyme, i.e., S-system or GMA-
system equations (Shiraishi and Savageau, 1992a, 1992b, 1992c,
1992d). Each power-law flux term in the differential equations consists
of the product of a rate constant and the relevant dependent and
independent variables with an exponential parameter or kinetic order.
The sign of each kinetic order and the magnitude of its absolute value
provide information on the types and magnitudes of the interactions
(Voit, 2000).

BST provides logarithmic gains (independent variable sensitivities)
and parameter sensitivities (Savageau and Sorribas, 1989). The kinetic-
order sensitivity expresses the ratio of relative change in a dependent
variable to the relative change in a kinetic order. A larger absolute value
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of this sensitivity indicates that the system is influenced more strongly
by a change in the kinetic order. When plural metabolites interact with
a specific enzyme, the kinetic-order sensitivity can be used as an
indicator of which metabolite has a stronger effect. Thus, sensitivity is
gaining importance as demand for mathematical modeling in large-
scale systems increases. As demonstrated here, however, under specific
conditions calculation of kinetic-order sensitivities can produce values
with opposite signs.

The present study, therefore, pinpoints a difficulty in calculating
kinetic-order sensitivities and elucidates the reason for the incorrect
results. Moreover, several methods to overcome the difficulty are
proposed.

2. Theory

2.1. GMA system-type equations

It is convenient to calculate the kinetic-order sensitivities in such a
way that it is possible to investigate how each dependent variable
responds to a change in a specific kinetic order in differential equations
with more than two flux terms. Hence, we will discuss GMA-system
representation. In a metabolic reaction system consisting of n meta-
bolite concentrations (dependent variables) Xi (i=1, …., n), the meta-
bolic flux, vk (k=1, …., z) is generally expressed as:

v f X X X= ( , , ..... , )k n1 2 (1)

which can be transformed using the steady-state metabolite concentra-
tions and the power-law equation:
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where γk is the rate constant and fkj is the kinetic order associated with
Xj in the kth flux equation, z is the number of flux equations, and n is
the number of dependent variables. Transformation of Eq. (1) to (2) is
performed using the equations:
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where the superscript * indicates that the results are evaluated at the
steady state. Consequently, the differential equations in a GMA system,
representing the time courses of the metabolite concentrations, Xi (i=1,
…, n), are given as:

∑X
dX
dt
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where Nik is the stoichiometric coefficient in the flux equation for vk in
the differential equation for Xi.

2.2. Equations for calculating kinetic-order sensitivities

Matrix representation of Eq. (5) is given as (Voit, 2000):

X N v̇ ] = [ ] ] (6)
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and the symbols ] and [] represent vectors and matrixes, respectively.
Differentiating Eq. (6) with respect to the kinetic orders fpq (p=1,…, z;

q =1,…, n) and arranging the results provides the equations for the
kinetic-order sensitivities of metabolite concentrations:
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and the kinetic-order sensitivities of fluxes:
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where lnXq] is the vector with a value of lnXq in the pth line and zero
in all other lines, given as:
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[S(X, γ)] represents the rate constant sensitivities of the metabolite
concentrations, expressed as:
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and [S(v, γ)] represents the rate constant sensitivities of the fluxes,
expressed as:
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where the subscripts d and i indicate that the results are evaluated using
the dependent and independent variables, respectively. The matrix [v]
is given as:
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and [I] is the unit matrix. Moreover, [f]d is the matrix for the kinetic
orders associated with the dependent variables, given as:
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