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A B S T R A C T

Predicting biodiversity relaxation following a disturbance is of great importance to conservation biology.
Recently-developed models of stochastic community assembly allow us to predict the evolution of communities
on the basis of mechanistic processes at the level of individuals. The neutral model of biodiversity, in particular,
has provided closed-form solutions for the relaxation of biodiversity in isolated communities (no immigration or
speciation). Here, we extend these results by deriving a relaxation curve for a neutral community in which new
species are introduced through the mechanism of random fission speciation (RFS). The solution provides simple
closed-form expressions for the equilibrium species richness, the relaxation time and the species-individual
curve, which are good approximation to the more complicated formulas existing for the same model. The
derivation of the relaxation curve is based on the assumption of a broken-stick species-abundance distribution
(SAD) as an initial community configuration; yet for commonly observed SADs, the maximum deviation from
the curve does not exceed 10%. Importantly, the solution confirms theoretical results and observations showing
that the relaxation time increases with community size and thus habitat area. Such simple and analytically
tractable models can help crystallize our ideas on the leading factors affecting biodiversity loss.

1. Introduction

Habitat loss and fragmentation are the main causes of biodiversity
loss today. At the same time, the extinctions following such distur-
bances are not easy to predict because they do not all happen at once. A
given disturbance can cause direct extinctions of species (imminent
extinctions, e.g. spatially correlated disturbance on endemic species
with a narrow geographic range (Kallimanis et al., 2005)), but it can
also have long-lasting effects on the environmental conditions affecting
the remaining species (e.g. area reduction, isolation, reduced popula-
tions, etc.). As a result, the community that is left after the disturbance
is generally out of equilibrium and more species go extinct as the
community relaxes to a new equilibrium (extinction debt, Jackson and
Sax, 2009; Halley et al., 2014,). This process is called relaxation.
Because the extinctions that happen during the relaxation process are
likely to be much more than imminent extinctions (Halley et al., 2014),
predicting extinction debt is of great importance to conservation. To
this end, a model of ecological community dynamics is necessary.

Early attempts to describe the relaxation process were based on the
theory of island biogeography of MacArthur and Wilson (1967)
(Diamond, 1972; Terborgh, 1974). Recently, the development of

stochastic models of community assembly gave the opportunity to
describe the evolution of ecological communities on the basis of
fundamental ecological processes like the births, deaths and immigra-
tion of individuals as well as speciation. The neutral model of
biodiversity (Hubbell, 2001), in particular, has proven very successful
in this respect as it provides closed-form solutions for the equilibrium
as well as the dynamics of communities (e.g. McKane et al. 2000;
Volkov et al., 2003; Azaele et al., 2006; Etienne and Alonso, 2007;
Rosindell and Cornell, 2007; O’Dwyer and Green, 2010; Vanpeteghem
and Haegeman, 2010; Chisholm, 2011). This has been used to model
the relaxation process in isolated habitats. Gilbert et al. (2006) derived
a closed-form solution for the variation of species richness with time in
a completely isolated community (no immigration or speciation), which
is applicable to short timescales. Halley and Iwasa (2011) gave a more
complete solution to the problem by deriving a relaxation curve that
also applies to long timescales. The relaxation curves of Gilbert et al.
(2006) and Halley and Iwasa (2011) can predict the decline of species
richness in isolated habitats such as islands that lie far away from the
mainland. However, these might not give equally good estimates in
habitats where species recruitment through immigration and/or spe-
ciation is high. Note that in the fully isolated model, the equilibrium
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state is fixation, i.e. eventually only one species is present in the
community.

In this paper we extend previous results and derive a relaxation
curve for a neutral community in which new species are recruited
through speciation. To our knowledge this is the first closed-form
solution to include species recruitment. The recruitment of new species
balances species extinctions and results in a non-trivial number of
species at equilibrium. To model speciation we use the mechanisms of
random fission speciation (Haegeman and Etienne, 2010). This was
introduced by Hubbell (2001) as an alternative to point mutation
speciation to describe regional community dynamics. Where in point
mutation new species are created by random mutations of individuals
at birth, in random fission, new species are created by dividing the
population of species into two fragments, with one of the fragments
forming the population of the new species while the other remaining to
the old species. Random fission speciation is considered a more
realistic description of allopatric speciation than point mutation. This
provides more realistic predictions for speciation rates, species long-
evities and the percentage of rare species (Etienne and Haegeman,
2011; Rosindell et al., 2011). Such a model is appropriate to describe
the speciation process in groups of islands or fragments, which are
often the type of habitats that result after habitat loss or fragmentation
(e.g. see the model by Yamaguchi and Iwasa, 2013).

Here, we use the model of random fission speciation as described in
Haegeman and Etienne (2010). This is an implicit-space model (i.e. the
community is a mix of individuals with no geographic constraints) in
which the only source of species number increase is random fission
speciation (i.e. there is no immigration or emigration). We assume that
the community has a fixed number of individuals through time (zero-
sum rule) and that speciation events happen at a constant rate. The
constant rate of speciation implies a constant per capita speciation rate
(since the community size is fixed). So in the model, the speciation
process is governed by individuals (individual-level random fission,
Etienne and Haegeman, 2011). In an alternative (and more realistic)
mode, the speciation rate is proportional to the number of species, but
because the species number varies during the relaxation process this
leads to significantly more complicated equations. Here we restrict
ourselves to the individual-based model.

We solve the random-fission speciation model to derive a closed-
form relaxation equation. The solution provides simple expressions for
the equilibrium species richness, species-individual curves and relaxa-
tion times. In deriving the equation we assumed a fixed proportion of
species with one individual throughout the relaxation process, corre-
sponding to the broken-stick species-abundance distribution (SAD),
and use simulations to investigate the range of parameters for which
the equation lies close to the real solution (i.e. the one that takes into
account the initial SAD). Finally, we discuss the potential for practical
application of the equation and possible extensions towards a more
realistic description of the relaxation process in the presence of
speciation (or immigration).

2. Methods

2.1. The RFS model

The model of a neutral community subject to Random Fission
Speciation (RFS) has been studied by Haegeman and Etienne (2010)
and Etienne and Haegeman (2011). In this, the community evolves in
time through birth-death events, which happen at a constant rate μ
(community-level birth rate), and speciation events, which happen at a
constant rate ν (community-level speciation rate). In a birth-death
event a random individual is selected for death and is immediately
replaced by the descendant of another random individual from the
community. In a speciation event, a species is selected with probability
proportional to its abundance to undergo speciation. The population of
this species splits into two fragments, one corresponding to the newly

formed species and the other remaining to the old species. If the initial
abundance of the old species is k, then, after the split, the old (or the
new) species can have from 1 up to k-1 individuals, with all possible
ways of splitting having the same probability. If a species with one
individual is selected to speciate, the individual of this species is
replaced by an individual of a new species. In this case, however, there
is no net effect on the total species number. Note that both birth-death
and speciation processes conserve the total number of individuals in
the community, so that the community size is constant at all times.

2.2. Derivation of the relaxation curve

Starting from the master equation for the expected number of
species having abundance n (equation 34 of Haegeman and Etienne,
2010), we derive a differential equation for the variation of the average
species richness with time (see Appendix A. Supplementary material
for the detailed derivation). This is:

dS
dt

ν μ ν
J

S= − + ,1 (1)

where J is the community size (constant), ν and μ are the constant
community-level speciation and birth rates and S1 denotes the average
number of species with one individual. Eq. (1) is not solvable at its
current form because S1 is a variable with unknown dependence on t or
S. However, for a community at, or close to, equilibrium, S1 is a given
fraction of the total species richness, S, determined by the equilibrium
species-abundance distribution (SAD). To express S1 as a function of S,
we assume that the fraction of species having one individual is fixed
throughout the relaxation process, determined by the equilibrium SAD.
For the random fission community, the equilibrium SAD is very close to
the broken-stick distribution (see Etienne and Haegeman (2011)
equation (74) of Appendix D), for which the expected number of
species with one individual is S S S J J= [ ( − 1)/ ](1 − 1/ )S

1
−2. For J > > S

> > 1 this is well approximated by S S J≈ /1
2 (see Appendix B.

Supplementary material). Upon substituting into Eq. (1) this results
in a differential equation of the desired form:

dS
dt

ν μ ν
J

S= − + .2
2

(2)

Setting dS/dt=0 in Eq. (2) gives the equilibrium species richness:

S J ν
ν μ

=
+

.eq
(3)

Note that the same equilibrium relation has been derived empiri-
cally by Ricklefs (2003). In Eq. (3), the sum of the speciation and birth
rates, ν+μ, is the total rate at which events happen in the community.
Thus, the fraction ν'=ν/(ν+μ) represents the probability of speciation
given that an event happens; that is the speciation probability in the
discrete time model (see Hubbell, 2001). Eq. (3) simplifies to
S J ν= ′eq and implies that the equilibrium number of species is
proportional to the number of individuals, given a fixed per capita
probability of speciation. This assumption is fair if we accept that the
speciation process is driven by individuals (e.g. point mutation at
birth), however in a more realistic situation (e.g. allopatric speciation)
the probability of speciation will also depend on the number of existing
species (Etienne, 2007, Etienne and Haegeman, 2011). That is, the per
capita speciation rate is expected to vary with community size.

The differential Eq. (2) can be solved by separation of variables (see
Appendix C. Supplementary material), which leads to our main result:

S S
S

e
= +

2

− 1
.S S

S S
γt

eq
eq

+
−

0 eq

0 eq (4)

In Eq. (4) Seq is the equilibrium species richness of Eq. (3), S0 the
species richness at time t=0 and γ=2ν/Seq a constant determining the
rate of increase or decrease of species richness, which we call the
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