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A B S T R A C T

Our focus is on the short-term dynamics of reactive ecological systems which are stable in the long term. In
these systems, perturbations can exhibit significant transient amplifications before asymptotically decaying.
This peculiar behavior has attracted increasing attention. However, reactive systems have so far been
investigated assuming that external environmental characteristics remain constant, although environmental
conditions (e.g., temperature, moisture, water availability, etc.) can undergo substantial changes due to seasonal
cycles. In order to fill this gap, we propose applying the adjoint non-modal analysis to study the impact of
seasonal variations of environmental conditions on reactive systems. This tool allows the transient dynamics of
a perturbation affecting non-autonomous ecological systems to be described. To show the potential of this
approach, a seasonally forced prey-predator model with a Holling II type functional response is studied as an
exemplifying case. We demonstrate that seasonalities can greatly affect the transient dynamics of the system.

1. Introduction

A dynamical system exhibits a stable equilibrium configuration
when small disturbances decay to zero after a sufficiently long time
from their onset. However, perturbation temporal dynamics occurring
at finite time can exhibit two types of behavior. Perturbations can
either monotonically decay to zero or exhibit large and long lasting
transient amplifications before disappearing (Schmid and
Henningson, 2000). In the former case, the short-term and the long-
term qualitative dynamics coincide. In the latter case, the system state
can transiently run very far from the final equilibrium configuration,
and the complete recovery of the equilibrium may take a great deal of
time. This non-monotone decay of perturbations has important con-
sequences. Firstly, when the timescales of interest are shorter than the
duration of the transient amplifications, the system appears unstable
(i.e., disturbances amplify) although perturbations disappear after a
long time. Secondly, external perturbations may repeatedly force the
system, thus keeping the system away from the equilibrium configura-
tion. Thirdly, disturbances can amplify to such an extent that they
render the nonlinear terms significant. If this occurs, secondary
instabilities can be triggered (the so-called by-pass transition, see
(Rempfer, 2003; Lee and Wu, 2008)).

The occurrence of transient amplifications in asymptotically stable
dynamical systems was detected for the first time in the field of
hydrodynamic stability (Trefethen et al., 1993; Reddy and
Henningson, 1993). Soon after, transient growths were also found to
play a crucial role in other problems, such as laser physics (Siegman,

2001, 1986), the numerical solution of nonlinear partial differential
equations (Trefethen and Embree, 2005), and geophysical morphody-
namics (Camporeale and Ridolfi, 2009; Vesipa et al., 2012; Caruso
et al., 2016). Transient amplifications of the total perturbation energy
are possible only when the eigenvectors of the corresponding linearized
system are non-orthogonal (Arnoldi et al., 2016; Trefethen and
Embree, 2005). For this reason, studies about the short-term behavior
of perturbations in stable dynamical systems are often referred to as
non-normal or non-modal analyses. However, it should be stressed that
the non-normality of the eigenvector set is a necessary but not
sufficient condition to induce the transient growth of perturbations
(Trefethen and Embree, 2005).

In ecology, the dynamics of populations were investigated for the
first time from a non-modal perspective by Neubert and Caswell
(1997). They demonstrated that strong transient growths of population
perturbations can occur in ecological systems, and defined as reactive
those systems which exhibit transient amplifications. As the short-term
response of a reactive stable system (i.e., amplification of perturba-
tions) is completely different from its asymptotic behavior (i.e.,
damping of perturbations), Neubert and Caswell (1997) highlighted
that non-modal analysis is fundamental to understand and interpret
the dynamics observed in the real world. In fact, reactive ecological
systems are continuously perturbed by external disturbances, and real
world dynamics are likely to be a sequence of short-term responses
triggered by environmental perturbations.

The seminal work by Neubert and Caswell (1997) opened the way to
the non-modal stability analysis of ecological problems. The occurrence
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of transient growth of perturbations was found to be a key property in
discrete-time ecological systems (Caswell and Neubert, 2005), matrix
population models (Caswell, 2001), food webs (Chen and Cohen,
2001), prey-predator models (Neubert et al., 2004), and ecosystem
compartment models (Marvier et al., 2004). More recently, Caswell
(2007) and Verdy and Caswell (2008a) focused on sensitivity analyses
of transient population dynamics. Anderson et al. (2008) extended the
transient response analysis to advective systems, while Buckwar and
Kelly (2014) considered the impact of stochastic disturbances. Many
studies have also been devoted to understanding the ecological causes
of the transient growth of perturbations (Verdy and Caswell, 2008a;
Snyder, 2010) and to developing a theoretical framework for finding
transient growths in ecological time-series obtained from experiments
(Neubert et al., 2009). Several experiments and field observations have
confirmed the existence of transient growths in real ecological systems,
such as populations of flour beetles of the genus Tribolium (Caswell
and Neubert, 2005; Cushing, 2003) and plant populations (Stott et al.,
2010; Ellis and Crone, 2013). Finally, the study of transient growth of
perturbations has become an important issue in population manage-
ment (Ezard et al., 2010).

The relation between reactive systems and excitable systems has
also been explored (McCoy, 2013). In reactive stable systems, infini-
tesimal perturbations can be transiently amplified. On the other hand,
in excitable stable systems only finite-amplitude perturbations are
important. If the size of a perturbation exceeds a given threshold, the
perturbation experiences long and strong amplification phenomena
(Truscott and Brindley, 1994; Morozov and Petrovskii, 2009). In
contrast, monotonic decay is observed if the size of perturbations is
below the threshold. Reactivity is a purely linear phenomenon, while
excitability is related to nonlinear dynamics. Hence, reactivity and
excitability are conceptually unrelated: there are reactive systems that
are not excitable and vice versa (McCoy, 2013). However McCoy (2013)
demonstrated that many systems which exhibit excitable dynamics also
display a strong reactivity, in the same regions of the parameter space.

A common assumption adopted in previous studies about reactive
system is that the environmental conditions are constant during the
onset and the evolution of perturbations. One remarkable exception is
the work by Caswell (2007), which showed some preliminary results
about time-varying discrete models. However, it is well known that
many ecological systems are sensitive to cyclical environmental condi-
tions, e.g., the alternation of day and night, seasons, tides, etc. These
cycles induce periodic temporal variations in physical and environ-
mental characteristics (e.g., temperature, moisture, light, water avail-
ability, visibility, etc.). As a result, periodical oscillations of ecological
parameters that regulate population dynamics arise. Examples of these
are: oscillations in the birth or death rate, in the time predators take to
find their prey, in the availability of food, etc. (e.g., Cushing, 1977;
Kuznetsov et al., 1992).

Seasonalities can have a great impact on population dynamics
(hereafter we will use the word seasonality to refer to a cyclic variation
of an ecological parameter irrespective of the cycle length). Seasonalities
are, in fact, responsible for the occurrence in population dynamics of
forced stable cycles, multiple attractors and subharmonics, catastrophic
transitions, phase-locking, quasi-periodic behavior, and chaos (Cushing,
1977; Kuznetsov et al., 1992; Rinaldi et al., 1993; Summers et al., 2000;
Selgrade and Roberds, 2001; Franke and Selgrade, 2003). Seasonalities
also affect the persistence of populations in prey-predator systems, as
shown by, among others, Baek (2009); Baek et al. (2009); Garrione and
Rebelo (2016). Finally, seasonal oscillations are critical in real world
problems, such as phytoplankton evolution (Pascual, 1994), insect
population dynamics (Henson and Cushing, 1997), the bio-economics
of renewable resources (Castilho and Srinivasu, 2007), the control of
apple snails (Zhang and Zhu, 2007), the dynamics of microorganisms
subject to sequences of nutrient and antibiotic inputs (Zhang and Chen,
2008), and fish population dynamics in lakes with oscillating level
(Moussaoui et al., 2015).

The general picture is that, on the one hand, the study of reactive
systems has attracted much interest, but only the autonomous case has
been considered (i.e., model parameters are time independent). On the
other hand, periodic oscillations of environmental conditions are
widespread and can affect the system dynamics to a great extent. In
this scenario, two questions arise: Are the short-term dynamics of
reactive systems affected by a seasonal environmental forcing? And, if
so, to what extent? This topic has not been explored and is the focus of
our work.

In order to analytically study the transient behavior of seasonally
forced ecological systems, we propose applying non-modal adjoint
analysis (Schmid, 2007). This mathematical technique allows the study
of the full evolution of perturbations (i.e., from the onset at t=0 to the
eventual dissipation for t → ∞) evaluating the so-called growth func-
tion. This function embeds and completes the information that can be
obtained by the assessment of the reactivity alone, which only focuses
on the maximum growth rate of a perturbation at t=0 (Neubert and
Caswell, 1997; Arnoldi et al., 2016).

We restrict our analysis to seasonal oscillations characterized by a
long duration with respect to the typical intrinsic timescales of the
ecological system. This allows us to describe the basic non-autonomous
dynamics of the unperturbed system as a succession of equilibrium
states (i.e., unperturbed populations adjust instantaneously to new
environmental conditions).

In order to show the impact of seasonalities on reactive systems, the
proposed approach will be applied to a typical prey-predator model
with a Holling II type prey-predator response. This model was
introduced for the first time by Bazykin (1976) and is often referred
to in the literature as the Rosenzweig-MacArthur (RMA) prey-predator
model (Rosenzweig and MacArthur, 1963). This model, widely used in
a great number of previous studies, represents a wide class of real
systems (Verdy and Caswell, 2008b; Hilker and Lewis, 2010; Sherratt
et al., 2014; Garrione and Rebelo, 2016), and was extended to include
seasonalities of the ecological parameters (Rinaldi et al., 1993). Thus,
the RMA model provides an excellent case study to investigate how a
seasonally varying environment affects the transient amplification of
perturbations.

In the next section, the conceptual and analytical tools adopted to
study the short-term response of non-autonomous dynamical systems
are described. The third section is devoted to recalling the seasonal
RMA model, and to applying the non-modal adjoint analysis. Finally,
the effect of seasonalities on the short-term dynamics of predator and
prey populations is shown in Section 4. It should be noted that our
results are focused on the RMA model, but the proposed approach can
be applied for studying the short-term dynamics of any seasonally
forced ecological system.

2. Transient dynamics in ecological systems with time-
dependent parameters

Competitive communities, spatially structured populations, species
interacting in a food web, or abiotic-biotic flows in ecosystem models
are typically described by non-linear dynamical systems in continuous
time (Arnoldi et al., 2016). In these problems, species biomasses (or
number of individuals) are the dependent system variables. Let us
consider a generic case in which N variables interact in a seasonally
varying environment according to the set of N coupled differential
equations

t
t

t f tQ g Qd ( )
d

= [ ( ), ( )],
(1)

where the vector tQ( ) collects the dependent variables, the N-dimen-
sional function g describes the biomass dynamics and the species
interaction, and f(t) is the time-dependent forcing. This external
forcing represents the impact of the time-dependent external environ-
mental conditions on the ecological system, and renders the dynamical
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