
Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

The information capacity of the genetic code: Is the natural code optimal?

Ercan E. Kuruoglua,⁎, Peter F. Arndtb

a Institute of Information Science and Technologies, "A. Faedo", CNR, via G Moruzzi 1, 56124 Pisa, Italy
b Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, Ihnestr. 63/73, 14195 Berlin, Germany

A R T I C L E I N F O

Keywords:
Genetic code
DNA
Information capacity
Shannon theory
Information theory

A B S T R A C T

We envision the molecular evolution process as an information transfer process and provide a quantitative
measure for information preservation in terms of the channel capacity according to the channel coding theorem
of Shannon. We calculate Information capacities of DNA on the nucleotide (for non-coding DNA) and the amino
acid (for coding DNA) level using various substitution models. We extend our results on coding DNA to a
discussion about the optimality of the natural codon-amino acid code. We provide the results of an adaptive
search algorithm in the code domain and demonstrate the existence of a large number of genetic codes with
higher information capacity. Our results support the hypothesis of an ancient extension from a 2-nucleotide
codon to the current 3-nucleotide codon code to encode the various amino acids.

1. Introduction

The fundamental biochemical processes in the cell such as replica-
tion, transcription, translation as well as cell signalling can be envi-
sioned as information transfer processes. For some of these processes
there is an original information carrying message stored in a biological
entity (the DNA) that needs to be transferred to following generations
through a noisy medium characterised by mutations. In the end the
coding part of the DNA needs to be decoded to a protein, i.e the
biological message which is originally stored in DNA needs to be
transcribed into RNA and then translated into an amino acid sequence,
two processes which might cause errors as well.

The paradigm of information transfer in biological systems brings
into mind an analogy with communication systems (Fig. 1) where the
message is coded into a waveform or a signal which carries the
information coded in a way that it is compact, to save on material
and energy, and robust to noise to prevent loss of information. The
information carrying signal then is transferred over the noisy channel
to be received at a receiver and decoded to recover the information.

This analogy was established by several researchers in the past in
works as early as Jukes and Gatlin (1971), Yockey (1978), Román-
Roldán et al. (1996), Battail (2004) and Konopka (2006). A key
element of the analogy is the ability to quantify the information which
is provided by the entropy as an information measure (Shannon,
1948). Numerous publications in the literature have studied the
entropy of the DNA (Schneider and Spouge, 1997), across the species,
at protein binding sites (Schneider, 2000, 2010), etc. The reader is
referred to the paper by Fabris (2009) for a critical review and

summary of earlier work and formulation of the information theory
framework for various related problems. Some other works study the
problem from purely coding theory point of view and try to discover
hidden coding structures (May et al., 2004; Battail, 2004). Only a few
works (Gong et al., 2011; Balado, 2013), however, attempted at a full
analysis of the information transfer processes in the genome such as
protein coding, to derive its fundamental limits.

Calculation of the fundamental limits of transfer of information is
very important for the understanding of biological evolution over
generations as well as the functioning of biological processes to decode
the information stored in DNA. In particular, it can tell us the expected
time or number of generations after which vital information about an
organism would be lost during molecular evolution. It can also provide
us insight into understanding the existing natural genetic (codon-
amino acid) code and where it stands among all possible codes, in
particular, whether nature tried to optimize the information capacity in
choosing the natural code among a very large number of possible codes.

Although various previous publications build on the communica-
tions system analogy, most fail to address this problem, partly due to
the over-idealisation of the analogy. In a typical communication system
the messages are encoded and transmitted over noisy channels which
are to be received, decoded and reconstructed as close as possible to the
original message. It must be underlined that a full analogy with a
communication system fails in the sense that the encoder is lacking in a
biological system. In the case of protein coding, the decoded message is
not a DNA but an amino acid sequence. In this case, one can at best talk
of a hypothetical information source already coded in the form of a
nucleotide sequence.
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In this article, utilizing the Coding Theory of Shannon, we develop
theoretical limits of information preservation in non-coding and amino
acid coding DNA in terms of the channel capacity. The channel noise is
characterised by various mutation models widely accepted in the
literature. The quantification of the information preservation capacity
brings us to the discussion of the optimality of the natural genetic
(codon-amino acid) code. This question was posed in the past by
several researchers but the analyses were not done in terms of channel
capacity. Furthermore, considering other possible codes only a very
limited part of the entire space of codon-amino acid codes were
explored. With this publication, we propose an “intelligent” search
algorithm optimizing the channel capacity to find an optimal genetic
code and to understand where the natural code stands with respect to
an optimal code.

The rest of this article is organised as follows: the next section
provides the fundamentals of entropy as a measure of information and
of Shannon's coding theory and define channel capacity. We give
channel capacity results on non-coding DNA and protein coding DNA
in Section 2.2 and 2.3, respectively. The optimality of the natural
codon-amino acid encoder is studied in Section 3. Conclusions and
future research directions are provided in Section 4.

2. Methods

2.1. Information capacity

As in previous works on application of information theory in
biology, we quantify (the lack of) information with entropy, following
the definition of Shannon (1948):

∑H p p p( ) = − log ,
i

i i2
(1)

where pi is the probability of the i-th source symbol in the dictionary of
possible symbols. As an example: for the observed human nucleotides
distribution of p = [0.29 0.21 0.21 0.29]A C G T[ , , , ] (Yamagishi and
Shimabukuro, 2008), the entropy is calculated to be
H p( ) = 1.9815 < 2A C G T[ , , , ] . If the nucleotides were uniformly distributed,
the entropy would have achieved the highest value of 2 for a dictionary
of size 4. Similarly, the entropy of the codon distribution in humans is
H p H p( ) = 5.7936 < 3 × ( ) = 5.9445codons A C G T[ , , , ] using the frequencies
reported in Nei and Kumar (2000). If all codons were equiprobably
distributed it would have achieved the maximum value of 6. The fact
that the entropy of codons is less than 3 times the entropy of
nucleotides indicates a statistical dependency between the nucleotides
in the codon.

Referring back to Fig. 1, the capacity of a channel is defined as the
maximum of the mutual information between the input and the output
of the channel.

∑C I X Y H Y H Y X p x y p x y
p x p y

= max ( ; ) = max( ( ) − ( | )) = max ( , )log ( , )
( ) ( )p p p x y,X X X

(2)

where H Y X( | ) is the conditional entropy of the output Y, given input X
and the maximum is taken over all possible input distributions pX. The
Channel Capacity provides a measure of the maximum information one
can transmit over a channel, the channel being characterised by

p Y X p X Y p X( | ) = ( , ) ( ), the distribution of the noise in the channel.
The analytic calculation of the Channel Capacity is not easy other

than for a limited number of special cases such as the Gaussian
channel, binary symmetric channel and binary erasure channel (Cover
and Thomas, 2005). However, a numerical algorithm exists for
calculating the channel capacity in the other cases, which is called
the Blahut-Arimoto algorithm (Blahut, 1972; Arimoto, 1972). The
Blahut-Arimoto algorithm searches iteratively the optimal input dis-
tribution leading to the highest mutual information between the input
and the output, which is a convex optimisation problem.

A communication channel is characterised by the noise in the
channel. In the case of the DNA channel, the noise is generated by
mutations. Mutations can be insertions, deletions or single nucleotide
substitutions. In our analyses we consider only substitutions since they
are the prevalent source of errors. We consider the non-coding DNA
channel and coding DNA channel, which also includes the translation
into amino acids, separately.

2.2. Non-coding DNA

We first calculate the information capacity for non-coding DNA. In
this case, the nucleotides are considered as independent messages and
the communication has a rate of 2 bits due to the four letter alphabet.
For the nucleotide channel, various substitution models have been
proposed in the literature. The simplest such model is the Jukes-Cantor
model, which assumes the same probability of error or mutation rate
for each nucleotide (Jukes, 1969). Hence, the substitution matrix is
characterised with only one parameter, the nucleotide substitution rate
q. The Jukes-Cantor rate matrix is given in
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where the row and column indices are A C G T, , , . Then, the transition
probability matrix P Y X( | ) for a finite time interval t can be obtained as
(Nei and Kumar, 2000)
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JC JC

(4)

where p qt= (1 − exp( − 4 ))/4. For m generations we have
P Y m X P Y X( ( )| ) = ( | )m. From (2), the channel capacity after m genera-
tions or m cascaded channels in Fig. 1 is

C I X Y m H Y m H Y m X= max ( ; ( )) = max[ ( ( )) − ( ( )| )]m
p p (5)

Since the channel is symmetric, a uniform input X leads to a uniform
output Y(m). The first term is maximized for the uniform case and is
simply log| |, where | | is the cardinality of X. The second term is
independent of the input and corresponds to the entropy of a row of the
substitution probability matrix (the entropy of all the rows are the
same). Using these simplifying arguments, the capacity for each
generation is calculated without the need for the Blahut-Arimoto
algorithm.

The results are given in Fig. 2 which show the exponential decline of
information capacity of the non-coding DNA channel with increasing
number of generations. The results show clearly that information
(capacity) vanishes exponentially over generations and that the time
scale is given by the mutation rate.

In the biological context, the substitution rates for the so called
transversions(purine-pyrimidine substitutions) and transitions(purine-
purine or pyrimidine-pyrimidine substitutions) are observed to be
different due to the different chemical properties of purines (Adenine
and Guanine) and pyrimidines (Cytosine and Thymine). A substitution

Fig. 1. A generic communications system.
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