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A B S T R A C T

The emergence of cooperation is a major conundrum of evolutionary biology. To unravel this evolutionary
riddle, several models have been developed within the theoretical framework of spatial game theory, focussing
on the interactions between two general classes of player, “cooperators” and “defectors”. Generally, explicit
movement in the spatial domain is not considered in these models, with strategies moving via imitation or
through colonisation of neighbouring sites. We present here a spatially explicit stochastic individual-based
model in which pure cooperators and defectors undergo random motion via diffusion and also chemotaxis
guided by the gradient of a semiochemical. Individual movement rules are derived from an underlying system of
reaction-diffusion-taxis partial differential equations which describes the dynamics of the local number of
individuals and the concentration of the semiochemical. Local interactions are governed by the payoff matrix of
the classical prisoner's dilemma, and accumulated payoffs are translated into offspring. We investigate the cases
of both synchronous and non-synchronous generations. Focussing on an ecological scenario where defectors are
parasitic on cooperators, we find that random motion and semiochemical sensing bring about self-generated
patterns in which resident cooperators and parasitic defectors can coexist in proportions that fluctuate about
non-zero values. Remarkably, coexistence emerges as a genuine consequence of the natural tendency of
cooperators to aggregate into clusters, without the need for them to find physical shelter or outrun the parasitic
defectors. This provides further evidence that spatial clustering enhances the benefits of mutual cooperation and
plays a crucial role in preserving cooperative behaviours.

1. Introduction

An enduring puzzle in a wide range of biological disciplines is to
identify the principles underpinning the evolution of cooperation. In
this regard, much attention has been given to the prisoner's dilemma as
a possible conceptual apparatus to shed some light on the way
cooperative behaviours emerge and are maintained (Roca et al., 2009).

In the classical prisoner's dilemma, individuals belonging to a well-
mixed population interact through a two-player game in which each
individual can adopt one of two strategies: Cooperator (C) or Defector
(D). The outcome of the game is determined by the following payoff
matrix

R S
T P

C D
C
D (1.1)

If both players cooperate, they get the ‘reward’ (R) payoff. If one player
defects while the other cooperates, the former gets the ‘temptation’ (T)
payoff and the latter gets the ‘sucker's’ (S) payoff. Finally, if the two
players defect they both get the ‘punishment’ (P) payoff. If
T R P S> > > , defectors will necessarily outcompete cooperators. In
fact, whether an opponent decides to cooperate or defect, the strategy D
is unbeatable, by virtue of the fact that T R> and P S> . However, if
both players choose to defect they will end up with the payoff P, which
is lower than the payoff R that they would get by playing the strategy C.

In their pioneering papers published in the nineties (Nowak et al.,
1994a, 1994b; Nowak and May, 1992, 1993), Nowak & May developed
the idea, first suggested by Axelrod (1984), of extending game theory,
in general, and the standard version of the prisoner's dilemma, in
particular, to include spatial interactions between the players. Using a
cellular-automaton approach in which individual players are distrib-
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uted over a two-dimensional array, they demonstrated that cooperators
and defectors can coexist in the prisoner's dilemma, even if
T R P S> > > , on condition that a spatial structure is introduced.

Several models have been considered within this theoretical frame-
work since the original works proposed by Nowak and May [vid., for
instance, Alonso-Sanz (2014), Fogarty et al. (2012), Fu et al. (2010),
Gianetto and Heydari (2015), Grim (1997), Grujić et al. (2014),
Kirchkamp (2000), Qin et al. (2008), Lindgren and Nordahl (1994),
Nakamaru et al. (1997), Oliphant (1994), Pereira et al. (2008), Roca
et al. (2009), Schweitzer et al. (2002), Szabó and Fath (2007), Vainstein
and Arenzon (2001), Xia et al. (2015)]. Traditionally, explicit motion is
not included in these models, with strategies moving via imitation or
colonisation of neighbouring sites. More recently, increasing attention
has been given to models that incorporate individual movement. For
instance, Dugatkin and Wilson (1991) and Enquist and Leimar (1993)
allowed individuals to migrate between patches without spatial struc-
ture. Diffusion-based dispersal of offspring was considered in Hamilton
and Taborsky (2005), Koella (2000), Ferriere and Dieckmann, (2005),
van Baalen and Rand (1998). Ferriere and Michod (1995) studied an
explicit diffusive process in the context of the replicator equation, and
then extended their approach by including a diffusive term (Ferriere
and Michod, 1996). Stochastic cellular-automaton models in which
individuals can jump to a nearest empty site were developed in Jian-
Yue et al. (2007), Sicardi et al. (2009), Vainstein et al. (2007). A
dynamical system of reaction-diffusion type was investigated by
Durrett and Levin (1994). Aktipis (2004) proposed a walk-away
strategy to avoid repeated interactions with defectors. In de Andrade
et al. (2009), a conditional mobility model on a lattice was presented in
the context of the Chicken Game. Helbing and Yu (2008) introduced a
model of success-driven migration, where individuals move to the sites
with the highest estimated payoffs. Chen et al. (2011) explored the
effects of mobility when individuals interact with neighbours within a
prescribed view radius. The case of heterogenous view radii was
analysed by Zhang et al. (2011). An aspiration-induced migration
mechanism – inducing individuals to move to new sites if their payoffs
are under their aspiration level – was investigated by Yang et al. (2010)
and Lin et al. (2011). Meloni et al. (2009) focused on the case where
individuals are situated on a two-dimensional plane, and each indivi-
dual moves to a randomly chosen position with a certain speed.

To complement these earlier studies, in this paper we present a
spatially explicit stochastic individual-based model in which pure
cooperators and defectors diffuse through space and follow semio-
chemical cues. We believe these two generalisations to be important,
because many common biological situations involve diffusion-based
dispersal and/or chemotaxis guided by semiochemical gradients. In our
model, individuals occupying the same position can undergo binary
interactions. When interacting, they play a round of the prisoner's
dilemma game, and are awarded a payoff according to their strategy.
The accumulated payoff determines the reproductive fitness of indivi-
duals, and thus the number of their offspring. We investigate the case
of synchronous and non-synchronous generations. Following the
modelling strategy that Schofield et al., (2002, 2005) developed from
the original approach proposed by Anderson and Chaplain (1998), we
derive the individual movement rules from a system of parabolic
equations describing the dynamics of the local number of individuals
and the dynamics of the concentration of a semiochemical. This is a
further novelty that distinguishes our work from the existing literature
on spatial games.

To carry out numerical simulations, we consider a form of the
prisoner's dilemma in which defectors are parasitic on cooperators –
i.e., the S entry of the payoff matrix (1.1) is set to zero and defectors
invade a resident population of cooperators. Our main results show
that allowing individuals to diffuse through space, and move up
semiochemical gradients, brings about self-organised patterns in which
resident cooperators and parasitic defectors can coexist in proportions
that fluctuate about non-zero values. This is in stark contrast to the

expected catastrophic effect that the introduction of even a small
contingent of pure defectors into a population of pure cooperators
would have in a well-mixed scenario. In our spatial model, coexistence
has its roots firmly in spontaneous spatial organisation, without the
need for individuals to remember past encounters or play elaborate
strategies. This makes the results of our study applicable to a broad
range of real organisms.

2. The model

We study the interaction dynamics between pure cooperators and
defectors which move in a square domain Ω≔[−ℓ, ℓ] × [−ℓ, ℓ].
Individual movement is seen as the superposition of spatial diffusion
and chemotaxis. The former is due to random motion, whilst the latter
is guided by the gradient of a semiochemical emitted by individuals
themselves. Individuals occupying the same position can interact with
each other and the outcome of interactions is determined by the payoff
matrix (1.1). To keep the model as simple as possible, we make the
prima facie assumption that individuals cannot keep memory of past
interactions. Moreover, we assume that the semiochemical is equally
released from and sensed by cooperators and defectors. Despite these
simplifications, the model captures a wide spectrum of biological
scenarios.

2.1. Individual movement rules

At each time instant t ≥ 0, the concentration of semiochemical and
the number of individuals at position x y Ω( , ) ∈ are characterised by
the functions K t x y( , , ) ≥ 0 and I t x y( , , ) ≥ 0, respectively. The evolu-
tion of K t x y( , , ) is governed by the following reaction-diffusion
equation

K
t

β K νI γK∂
∂

= ∇ + −K
2

(2.1)

along with no-flux boundary conditions. Eq. (2.1) relies on the
assumptions that the semiochemical is produced by all individuals at
the same rate ν ≥ 0, undergoes a linear decay process at rate γ > 0, and
diffuses with diffusion coefficient β > 0K .

To describe the movement of cooperators and defectors, we make
use of the following strategy:

(i) We introduce the taxis-diffusion equation below

I
t

β I χ I K∂
∂

= ∇ − ∇·( ∇ ),I
2

(2.2)

along with reflective (no-flux) boundary conditions. In Eq. (2.2),
the diffusion term models the tendency of individuals to diffuse
through space with motility β > 0I . The advection term accounts
for the fact that both cooperators and defectors move up the
semiochemical gradient, and the parameter χ > 0 is the chemo-
tactic sensitivity coefficient.

(ii) We fix a time step tΔ and set t n t= Δn , we discretise the square Ω
with a uniform mesh as

x
L

x i x i L LΔ = ℓ , = Δ , ∈ [− , ] ⊂ ,i 
(2.3)

y
L

y j y j L LΔ = ℓ , = Δ , ∈ [− , ] ⊂ ,j 
(2.4)

and thereafter we approximate K t x y( , , )n i j and I t x y( , , )n i j by
discrete values Ki j

n
, and Ii j

n
, , respectively.

(iii) Following Schofield et al. (2002, 2005), we discretise Eq. (2.2) by
using an explicit five-point central difference scheme to obtain the
following algebraic equation for Ii j

n
,

+1, i.e., the number of indivi-
duals at grid-point x y( , )i j at the time step n + 1:
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