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a b s t r a c t 

Mechanics plays a crucial role in the growth, development, and therapeutics of tumors. In this paper, 

a nonlinear poroelastic theory is established to describe the mechanical behaviors of solid tumors. The 

free-swollen state of a tumor is chosen as the reference state, which enables us to avoid pursuing a dry 

and stress-free state that is hard to achieve for living tissues. Our results reveal that the compression 

resistance of a tumor is primarily attributed to glycosaminoglycan (GAG) swelling, and the compactness 

of cell aggregates is found to affect tumor consolidation. Over-expressed GAGs and dense cell aggregates 

can stiffen the tumor, a remodeling mechanism that makes the tumor with higher elastic modulus than 

its surrounding host tissues. Glycosaminoglycan chains also influence the transient mechanical response 

of the tumor by modulating the tissue permeability. The theoretical results show good agreement with 

relevant experimental observations. This study may not only deepen our understanding of tumorigenesis 

but also provide cues for developing novel anticancer strategies. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Tumor development is often accompanied with the change in 

mechanical properties (e.g., stiffness). Experiments showed that 

solid tumors undergo stiffening and are in general stiffer than the 

surrounding healthy tissues ( Paszek et al., 2005 ). On one hand, 

this feature has been harnessed to detect cancer ( Sinkus et al., 

20 0 0 ). On the other hand, tumor rigidity may compromise efficacy 

of chemotherapy ( Netti et al., 20 0 0 ) and promote tumor metastasis 

( Levental et al., 2009 ). In addition, by enhancing the compression 

resistance of solid tumor, this stiffening mechanism contributes to 

the growth-induced compressive stresses and elevates the intersti- 

tial fluid pressure, both of which are hallmarks of the mechanical 

microenvironment of cancers ( Jain et al., 2014 ). For example, com- 

pressive stresses in tumors can inhibit the proliferation of cancer 

cells, increase their invasive potential, and collapse the blood ves- 

sels ( Helmlinger et al., 1997; Tse et al., 2012; Padera et al., 2004; 

Stylianopoulos et al., 2012 ). 

Although solid tumors usually exhibit higher stiffness than their 

host tissues, tumor cells generally have lower elastic moduli than 

the corresponding normal cells ( Fritsch et al., 2010; Plodinec et al., 

2012 ). This apparent contradiction can be mainly attributed to 

the mechanical resistance capacity of tumor extracellular matrix 

(ECM) ( Butcher et al., 2009; Levental et al., 2009 ). ECM is primarily 
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composed of collagen fibrils and glycosaminoglycan (GAG) chains, 

both of which contribute to the mechanical property of the ECM 

( Frantz et al., 2010 ). The collagen network maintains the mechan- 

ical integrity of the ECM, and the excess deposition and crosslink- 

ing of collagen fibrils can promote tumor stiffening ( Levental et al., 

2009 ). Interspersed in the collagen network, GAG chains imbibe 

water, resulting in a gel-like phase that contributes to the com- 

pression resistance of tumors ( Provenzano et al., 2012; DuFort 

et al., 2016; Voutouri et al., 2016 ). 

Due to their relevance to tumor growth, metastasis and 

therapeutics, it is of importance to understand the mechanical 

properties of tumors ( Stylianopoulos et al., 2013; Voutouri et al., 

2014 ). A solid tumor can be treated as a multi-phase material 

consisting of a solid organic matrix, which is composed of cell 

aggregates and ECM, and an interstitial fluid phase, which is 

predominantly water ( Jain, 1987; Chatelain et al., 2011 ). The 

traditional mixture theory proposed by Trusesdell (1957) is of- 

ten applied to model soft tissues consisting of multiple phases 

( Trusesdell and Noll, 2004 ). For example, the swelling and defor- 

mation of articular cartilage have been elucidated by considering it 

as a mixture of solid matrix, water, and the ionic species ( Lai et al., 

1991 ). In the mixture theory, each specie is controlled by balance 

equations (for mass and linear momentum) and thermodynamic 

laws, and the overall responses of the whole system are deter- 

mined by the rule-of-mixture relations ( Humphery and Rajagopal, 

2002; Byrne and Preziosi, 2003; Giverso and Preziosi, 2012; Wise 

et al., 2008; Ciarletta et al., 2011; Sciumè et al., 2014; Mascheroni 

et al., 2016 ). The mixture theory invokes various constitutive 
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relations and a number of associated parameters and, therefore, 

it is difficult to be solved. As an alternative, we here employ 

the poroelastic theory developed by Biot (1941) to describe the 

mechanical behaviors of tumors. In the poroelastic theory, the 

multiphase system is homogenized as a continuum with a solid 

skeleton and pore fluids. Thereby, the tissues can be studied in the 

framework of continuum mechanics. The solid and fluids follow 

distinct kinematics, and the interaction of solid and fluids are also 

taken into consideration ( Coussy, 2004 ). The poroelastic theory 

can well describe the basic features of multiphase systems and 

account for the complex chemomechanical coupling phenomena of 

solid tumors ( Roose et al., 2003; Garikipati et al., 2004; Loret and 

Simões, 2005; Grillo et al., 2012; Xue et al., 2016, 2017; Ambrosi 

et al., 2017 ). However, the mechanical characteristics and relevant 

biochemical mechanisms of solid tumors remain unclear as yet. 

In the present paper, a nonlinear poroelastic theory considering 

GAG swelling is formulated to capture the mechanical responses of 

a solid tumor. We choose the free-swollen state of the tumor as 

the reference state, and decompose the overall tissue deformation 

into a swelling part and an elastic deformation part. By consider- 

ing the specific features of tumor tissues, we establish the free- 

energy function and the kinetic law of solid tumors. As an exam- 

ple, the steady state and the transient response of a tumor under- 

going confined compression are analyzed. Our theoretical results 

are validated by experiments in the literature. 

2. Theoretical model 

Since solid tumors are basically composed of the solid skeleton 

(i.e., cells and collagen fibrils) and the interstitial space filled with 

GAG chains and physiological solutions, the theory of poroelasticity 

is suitable to capture the macroscopic mechanics of solid tumors. 

For a porous soft tissue without externally applied loads, the 

skeleton is stretched due to the swelling of GAG chains. Therefore, 

the total deformation of the skeleton consists of two portions 

arising from GAG swelling and mechanical loading. In this theory, 

the swollen, homogenous, and stress-free state is chosen as the 

reference state ( Lucantonio et al., 2013; Vernerey, 2016 ), which 

is close to the physiological state of living tissues and the initial 

state of samples in the experimental environment ( Mow et al., 

1984; Netti et al., 20 0 0 ). This enables us to directly compare the 

theoretical prediction with the experimental results, such as the 

stresses (and strains) measured by compression tests and the 

contents of collagen and GAGs estimated by biochemical analysis 

( Netti et al., 20 0 0 ). 

The positions of a representative material point in the reference 

and current deformed configurations are described by X and x , re- 

spectively. Let F = ∂ x /∂ X denote the deformation gradient of the 

tumor. To account for the swelling-induced skeleton deformation, 

we further introduce a dry configuration of the skeleton, which is 

actually the initial state of the skeleton before any deformation. 

The deformation gradient F 0 = ∂ X /∂ ̃  X maps an infinitesimal ele- 

ment in the dry configuration to the reference configuration, where 
˜ X labels the material point in the dry skeleton. For the case when 

the solid skeleton is homogeneous and isotropic, we have F 0 = λ0 I , 

with λ0 being the initial skeleton stretch due to GAG swelling. Con- 

sequently, the total deformation gradient of the skeleton, ˜ F = ∂ x /∂ ̃  X , 

can be described by ˜ F = F · F 0 . 

We use the following compressible and isotropic Neo–Hookean 

strain energy density function to characterize the skeleton in the 

dry configuration 

˜ W sk = 

1 

2 

˜ ϕ sk μsk 

(
˜ I 1 − 3 − 2 ln 

˜ J 
)
, (1) 

where ˜ ϕ sk is the volume fraction of the skeleton in the dry con- 

figuration, μsk is the initial shear modulus of the skeleton, ˜ I 1 = 

tr( ̃ F T · ˜ F ) , and 

˜ J = det ( ̃ F ) is the volumetric ratio. From 

˜ F = F · F 0 and 

F 0 = λ0 I , we have ˜ I 1 = λ2 
0 
I 1 , and 

˜ J = J 0 J, where I 1 = tr( F T · F ) , J = 

det (F ) , and J 0 = det ( F 0 ) = λ3 
0 
. Letting W sk and ϕsk denote the free 

energy and volume fraction of the solid skeleton in the reference 

configuration, respectively, we have W sk = 

˜ W sk / J 0 and ϕ sk = ˜ ϕ sk / J 0 . 

Hence, W sk can be written as 

W sk = 

1 

2 

ϕ sk μsk 

(
λ2 

0 I 1 − 3 − 2 ln J − 6 ln λ0 

)
, (2) 

where λ0 can be determined from the case of free-swelling (i.e., 

F = I ). 

The GAGs immersed in the ECM are short chains that carry 

negative charges and capable of imbibing water ( Auckland and 

Nicolaysen, 1981; Swartz and Fleury, 2007 ). GAG chains bind to 

a protein core and form macromolecules, such as proteoglycans 

and hyaluronan. By using the Flory-Huggins theory, the free energy 

W sol resulting from mixing the GAGs and water molecules can be 

estimated as ( Flory, 1942; Huggins, 1942 ) 

W sol = k B T C w 

(
ln 

νw 

C w 

ϕ G + νw 

C w 

+ 

χϕ G 

ϕ G + νw 

C w 

)
, (3) 

where C w 

and ϕG are the concentration of the solvent and the 

volume fraction of GAG chains in the reference configuration, re- 

spectively; νw 

the volume of a water molecule, k B the Boltzmann 

constant, T the absolute temperature, and χ a dimensionless pa- 

rameter characterizing the enthalpy of mixing. 

Besides, the interstitial fluid are solutions composed of water 

molecules and free ions. Hence, mixing the fluid constituents also 

contributes to the free energy as ( Hong et al., 2010 ) 

W ion = k B T 
∑ 

b 

C b 

(
ln 

C b 

νw 

C w 

c ref 
b 

− 1 

)
, (4) 

where C b is the concentration of solute b in the reference configu- 

ration and c ref 
b 

the reference concentration of solute b . 

In addition, we introduce two constraint conditions. The first is 

the saturation constraint, that is, the sum of the volumes of the 

solid skeleton, GAG chains and water molecules equals the total 

volume of the tumor tissue. The backward Piola transformation of 

this constraint can be written as ( Hong et al., 2010; Xue et al., 

2017 ) 

ϕ G + ϕ sk + νw 

C w 

= J. (5) 

For soft tissues, the porosity n can be defined as the volume 

fraction of the interstitial space, that is, n = v w 

C w 

. Using Eq. (5) , we 

further have n = J − ϕ sk − ϕ G . Both the solid and fluid constituents 

of the tumor are assumed incompressible. 

The second constraint condition is the electroneutrality, that is, 

the net charge everywhere in the tissue vanishes ( Gu et al., 1998; 

Cheng et al., 2015 ). In tumors, charges prevailingly come from the 

GAG chains and free ions in the interstitial fluid. The electroneu- 

trality condition can be expressed as ∑ 

β

e z βC β + e z G 
ϕ G 

v G 
= 0 , (6) 

where e is the elementary charge, z β the valence of fluid con- 

stituent β , z G the charge carried by each GAG chain, and νG the 

volume per GAG chain. 

Taken together, the Helmholtz free energy density of solid tu- 

mors involves the contributions from stretching the skeleton W sk , 

mixing the GAG chains and the solvent W sol , and mixing the sol- 

vent and solutes W ion . Combining Eqs. (5) and (6) , the free energy 

density finally reads 

W = W sk + W sol + W ion + �( ϕ G + ϕ sk + νw 

C w 

− J ) 

+ 	

[ ∑ 

β

e z βC β + e z G 
ϕ G 

v G 

] 

, (7) 
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