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a b s t r a c t 

We study the phenomenon of cyclic dominance in the paradigmatic Rock–Paper–Scissors model, as occur- 

ring in both stochastic individual-based models of finite populations and in the deterministic replicator 

equations. The mean-field replicator equations are valid in the limit of large populations and, in the pres- 

ence of mutation and unbalanced payoffs, they exhibit an attracting limit cycle. The period of this cycle 

depends on the rate of mutation; specifically, the period grows logarithmically as the mutation rate tends 

to zero. We find that this behaviour is not reproduced in stochastic simulations with a fixed finite popula- 

tion size. Instead, demographic noise present in the individual-based model dramatically slows down the 

progress of the limit cycle, with the typical period growing as the reciprocal of the mutation rate. Here we 

develop a theory that explains these scaling regimes and delineates them in terms of population size and 

mutation rate. We identify a further intermediate regime in which we construct a stochastic differential 

equation model describing the transition between stochastically-dominated and mean-field behaviour. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many mathematical models in ecology are well-known to be 

capable of generating oscillatory dynamics in time; important ex- 

amples stretch right back to the initial work of Lotka and Volterra 

on predator-prey interactions ( Britton, 2005; Guckenheimer and 

Holmes, 1988; Krupa, 1997; May and Leonard, 1975; Nowak, 2006; 

Toupo and Strogatz, 2015 ). Such models, although dramatic sim- 

plifications when compared to real biological systems, have a sig- 

nificant impact in shaping our understanding of the modes of re- 

sponse of ecological systems and are helpful in understanding im- 

plications of different strategies for, for example, biodiversity man- 

agement, and the structure of food webs ( Reichenbach et al., 2006 ). 

Competition between species is a key driver of complex dynam- 

ics in ecological models. Even very simple competitive interactions 

can yield complex dynamical behaviour, such as the well docu- 

mented example of the different strategies adopted by three dis- 

tinct kinds of side-blotched lizard ( Sinervo and Lively, 1996 ). Sim- 

ilar cyclical interactions occur in bacterial colonies of competing 

strains of E. coli ( Kerr et al., 2002; Kirkup and Riley, 2004; Weber 

et al., 2014 ). In mathematical neuroscience dynamical switches of 

this type have been referred to as ‘winnerless competition’ since 

there is no best-performing state overall ( Rabinovich et al., 2001; 

Tsai and Dawes, 2013 ). 
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Evolutionary Game Theory (EGT) provides a useful frame- 

work for modelling competitive interaction, in particular the 

replicator equations (see Taylor and Jonker, 1978 ; Schuster and 

Sigmund, 1983 ) give a dynamical systems interpretation for 

models posed in game-theoretic language. Work by many au- 

thors, including in particular Hofbauer and Sigmund (1988) and 

Hofbauer (1994) has resulted in a very good understanding of 

replicator equation models for competing species. Recent work 

has extended these deterministic approaches to consider stochas- 

tic effects that emerge from consideration of finite, rather than 

infinite, populations. The classic Rock–Paper–Scissors (RPS) pro- 

vides an important example of stochastic phenomena in ecological 

dynamics. When mutation (allowing individuals to spontaneously 

swap strategies) is added to the replicator equations for the RPS 

game, the deterministic system can exhibit damped oscillations 

that converge to a fixed point. In Mobilia (2010) , it was shown that 

stochastic effects present in finite populations cause an amplifica- 

tion of these transient oscillations, leading to so-called quasi-cycles 

( McKane and Newman, 2005 ). For smaller values of mutation rate, 

the deterministic system passes through a Hopf bifurcation, and a 

limit cycles appears. Some past studies exist on the role of noise 

around limit cycles, such as Boland et al. (20 08 ; 20 09 ), in which 

small-scale fluctuations around the mean-field equations are ex- 

plored using Floquet theory. More recently, it has been discovered 

that noise can induce much stronger effects including counterrota- 

tion and bistability ( Newby and Schwemmer, 2014 ). 

In this paper we combine deterministic and stochastic ap- 

proaches in order to present a comprehensive description of the ef- 
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fect of demographic fluctuations around cycles of dominance in the 

RPS model. We determine three regimes, depending on the scaling 

of population size N and mutation rate μ. The basic link between 

stochastic individual-based dynamics and population-level ODEs is 

a theorem of Kurtz (1978) , allowing us to construct a consistent 

set of individual-level behaviours corresponding to the mean-field 

replicator dynamics for the RPS model that we take as our start- 

ing point. Between these two views of the dynamics lies a third: 

the construction of a stochastic differential equation (SDE) that 

captures the transition between them. Changing variables to the 

asymptotic phase of the ODE limit cycle reveals that the contri- 

bution of the stochasticity is to speed up some parts of the phase 

space dynamics and to slow down others but that the overall effect 

is to markedly increase the oscillation period. Our central conclu- 

sion is that as the stochastic effects become more important, the 

period of the oscillations increases rapidly, and this slowing down 

is a significant departure from the prediction of oscillation periods 

made on the basis of the mean-field ODE model. 

The structure of the remainder of the paper is as follows. In 

Section 2 we introduce the replicator dynamical model for the 

rock-paper-scissors game with mutation. The mean-field ODE ver- 

sion of the model is well-known and we derive a self-consistent 

individual-based description; this is not as straightforward as one 

might initially imagine. We show numerically that the two mod- 

els give the same mean period for the cyclic dynamics when the 

mutation rate μ is large but disagree when it is small. 

In Section 3 we summarise the computation to estimate the pe- 

riod of the limit cycle when μ is small. This follows the usual ap- 

proach, dividing up trajectories into local behaviour near equilib- 

rium points, and global maps valid near the unstable manifolds 

of these saddle points. Section 4 turns to the stochastic population 

model and analyses the dynamics in terms of a Markov chain. This 

leads to a detailed understanding of the individual-level behaviour 

in the limit of small mutation rate μ. Section 5 then fills the gap 

between the analyses of Sections 3 and 4 by deriving an SDE that 

allows us to understand the relative contributions of the stochastic 

behaviour and the deterministic parts in an intermediate regime. 

Finally, Section 6 discusses our results and concludes. 

2. Models for Rock–Paper–Scissors with mutation 

2.1. Rock–Paper–Scissors with mutation 

Rock–Paper–Scissors (RPS) is a simple two-player, three-state 

game which illustrates the idea of cyclic dominance: a collection of 

strategies, or unchanging system states, in which each state in turn 

is unstable to the next in the cycle. In detail: playing the strategy 

‘rock’ beats the strategy ‘scissors’ but loses to the strategy ‘paper’; 

similarly, ‘scissors’ beats ‘paper’ but loses to ‘rock’. When the two 

players play the same strategy the contest is a draw. 

This information is summarised in the payoff matrix 

P := 

( 

0 −1 − β 1 

1 0 −1 − β
−1 − β 1 0 

) 

(1) 

where β ≥ 0 is a parameter that indicates that the loss incurred 

in losing contests is greater than the payoff gained from winning 

them. When β = 0 , the row and column sums of P are zero: this 

is the simplest case. When β > 0, the game becomes more compli- 

cated, particularly when we would like to relate the behaviour at 

the population level to the individual level, as we discuss later in 

Sections 2.2 and 2.3 . 

2.2. Deterministic rate equations 

Setting the RPS game in the context of Evolutionary Game 

Theory (EGT), one considers a large well-mixed population of N 

players playing the game against opponents drawn uniformly at 

random from the whole population. We are then interested in 

the proportions of the total population who are playing differ- 

ent strategies at future times. The state of the system is given by 

the population fractions ( x a ( t ), x b ( t ), x c ( t )) := ( N A ( t ), N B ( t ), N C ( t ))/ N 

where N A , B , C ( t ) are the numbers of players playing strategies A, B 

and C respectively. 

The proportions of the population playing each strategy are ex- 

pected to change over time according to the typical payoff re- 

ceived, as compared to the average over the whole population. The 

simplest mean field model for the resultant dynamics are the repli- 

cator equations 

˙ x i = x i (t) 

( ∑ 

j 

P i j x j (t) −
∑ 

j,k 

P jk x j (t) x k (t) 

) 

, (2) 

where the subscripts i , j , k take values in { a , b , c } and the propor- 

tions x i sum to unity. 

A common variant of the model introduces the additional 

mechanism of mutation between the three strategies, occurring be- 

tween any pair with equal frequency. Mutation affects the rate of 

change of strategy i over time since the strategies other than i will 

contribute new players of i at rates μ while i will lose players at a 

rate given by 2 μx i as these players switch to a different strategy. 

In the particular case of Rock–Paper–Scissors, the combined ef- 

fects of the replicator dynamics together with mutations between 

strategies gives rise to the ordinary differential equations 

˙ x a = x a [ x c − (1 + β) x b + β(x a x b + x b x c + x a x c )] + μ(x b + x c − 2 x a ) , 

˙ x b = x b [ x a − (1 + β) x c + β(x a x b + x b x c + x a x c )] + μ(x a + x c − 2 x b ) , 

˙ x c = x c [ x b − (1 + β) x a + β(x a x b + x b x c + x a x c )] + μ(x a + x b − 2 x c ) . 

(3) 

We note that these equations are to be solved in the region of 

R 

3 where all coordinates are non-negative. This region is clearly 

invariant under the vector field (3) . Moreover, the constraint x a + 

x b + x c = 1 is required to hold at all times. 

The system (3) possess a single interior equilibrium point 

x ∗ = (1 / 3 , 1 / 3 , 1 / 3) , in which the three strategies are bal- 

anced. Straightforward linear stability analysis shows that this 

equilibrium is stable when μ > μc = β/ 18 . Previous work by 

Mobilia (2010) has shown that the system undergoes a Hopf bifur- 

cation as μ is lowered and that for μ < μc trajectories of (3) spiral 

away from x ∗ and are attracted to a unique periodic orbit which is 

stable, i.e a limit cycle. 

2.3. Stochastic chemical reactions 

The replicator equations shown above are expected to hold in 

the limit of infinitely large population size. In finite populations, 

however, the behaviour of many competing individuals is more ap- 

propriately modelled as a Markov process describing the random 

timing of individual events. It is common practice to specify such 

a stochastic model as a chemical reaction scheme, which, chosen 

appropriately should recover the ODEs (3) in the limit of large sys- 

tems. It is interesting to note that different stochastic individual- 

based models may give rise to the same mean-field ODEs, so that 

the question of constructing a stochastic reaction scheme start- 

ing from a particular set of ODEs does not have a unique answer. 

Moreover, the construction of the stochastic model is subject to a 

number of natural constraints, for example that all reaction rates 

are at all times non-negative. 

With the goal of studying dynamics around the fixed point x ∗ a 

reaction scheme was proposed in Mobilia (2010) based on consid- 

eration of the frequency-dependent Moran model with rates cho- 

sen to match the mean-field equations as required in the infinite 

system limit. Although that scheme is well motivated and perfectly 
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