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a b s t r a c t 

We revisit the question of when can dispersal-induced coupling between discrete sink populations cause 

overall population growth? Such a phenomenon is called dispersal driven growth and provides a sim- 

ple explanation of how dispersal can allow populations to persist across discrete, spatially heteroge- 

neous, environments even when individual patches are adverse or unfavourable. For two classes of math- 

ematical models, one linear and one non-linear, we provide necessary conditions for dispersal driven 

growth in terms of the non-existence of a common linear Lyapunov function, which we describe. Our 

approach draws heavily upon the underlying positive dynamical systems structure. Our results apply to 

both discrete- and continuous-time models. The theory is illustrated with examples and both biological 

and mathematical conclusions are drawn. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Persistence is a fundamental line of enquiry in the mathemati- 

cal modelling of populations. Models for populations date back as 

early as the work of Leonardo of Pisa in the 1200s, with later no- 

table historical contributions by Malthus in the 1790s, Verhulst in 

the 1840s and Lotka and Volterra in the 1920s, see Murray (2002) . 

More recently persistence, as a property of mathematical models, 

has been incorporated into mainstream mathematical biology with 

detailed treatments from both deterministic ( Smith and Thieme, 

2011 ) and stochastic ( Schreiber, 2012 ) perspectives. There are ob- 

vious applications of a theoretical framework which describes and 

explains persistence, from ecosystem composition and function, 

natural resource management or conservation, to the control of in- 

vasive or pest species. 

A simple class of linear models for populations assumes a 

discrete-time unit, and partitions the population according to some 

discrete age-, stage- or size-class, which leads to the linear vector 

difference equation 

x (t + 1) = Ax (t) , x (0) = x 0 , t ∈ N 0 , (1.1) 
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called a matrix population projection matrix model. The reader is 

referred to, for example, the monograph of Caswell (2001) for a 

thorough treatment of matrix population models. The matrix A in 

(1.1) models vital rates or life-history parameters of the popula- 

tion and the vector x ( t ) denotes the abundances of each stage-class 

at time-step t , with initial stage-structure determined by x 0 . Sim- 

ple linear algebra can be used to project structured populations 

through time and, under biologically reasonable mathematical as- 

sumptions, the long-term or asymptotic behaviour of the solution 

x of (1.1) is determined by the spectral radius of A , denoted r ( A ), 

which is also an eigenvalue of A . Correspondingly, this term is of- 

ten called the asymptotic growth rate , the dominant eigenvalue or 

sometimes just λ. The situations r ( A ) < 1 or r ( A ) > 1 have been 

termed a (deterministic) sink or source population as they corre- 

spond to the model predicting asymptotic extinction or growth, re- 

spectively. 

The model (1.1) does not include an explicit spatial compo- 

nent which is an obvious limitation since in reality all populations 

exhibit a spatial extent and range. Spatial structure is known to 

be a crucial factor affecting the persistence of metapopulations, 

identified in the seminal work of Pulliam (1988) . Patch dynam- 

ics is a term used to describe the situation whereby a popula- 

tion’s temporal dynamics are augmented with a (finite) discrete- 

spatial structure, that is, finitely many distinct locations or patches. 

A patch model is obtained from (1.1) by, in essence, connecting 

multiple copies of (1.1) together via dispersal. One explanation for 

persistence of sink populations, either individually or with a patch 
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structure, is the contribution from external immigration. Amongst 

a variety of possible references, we refer the reader to, for ex- 

ample, Gonzalez and Holt (2002) , Holt et al. (2003) and Roy 

et al. (2005) as well as Matthews and Gonzalez (2007) or Eager 

et al. (2014a ) which, broadly, have explored and estimated both 

theoretically and empirically the effects of immigration on pop- 

ulation abundance and distribution. It is certainly the case, by 

definition, that models for any number of deterministic sinks in 

the absence of dispersal or immigration predict asymptotic de- 

cline. However, perhaps somewhat counter-intuitively, determinis- 

tic sinks, when coupled by dispersal, may lead to a population that 

persists asymptotically, understood appropriately; a phenomenon 

known as dispersal driven growth (DDG). DDG may occur in the 

absence of immigration or a (single) deterministic source patch. 

For sink patches in isolation, zero is a stable equilibrium. More- 

over, dispersal is a diffusive and not (directly) creative process —

indeed, there may be a mortality risk associated with dispersing 

— and so appears an a priori stabilising process. At first glance, 

therefore, DDG posits that a seemingly stabilising connection of 

stable objects need not be stable. Such dynamical behaviour should 

not come as surprising, however, as “instability from stability” oc- 

curs elsewhere in mathematical biology; the most famous and now 

archetypal example being proposed by Turing (1952) as a mech- 

anism for the formation of spatial heterogeneity from a homo- 

geneous steady state in reaction-diffusion equations. The instabil- 

ity that arises in reaction-diffusion equations caused by diffusion, 

which is usually ‘stabilising’ (in the sense that heat dissipates over 

time), now bears his namesake Turing Instability and is also known 

as Diffusion Driven Instability; see, for example, Murray (1982) . 

The recent paper ( Elragig and Townley, 2012 ) presents a neces- 

sary condition for Turing Instability in terms of the non-existence 

of a so-called joint or common Lyapunov function, and builds 

on Neubert et al. (2002) . To summarise Elragig and Townley (2012) , 

when the linearized reaction matrix and the diffusion matrix ad- 

mit a common Lyapunov function, Turing Instability is not possi- 

ble. Common Lyapunov functions are a powerful tool which have 

primarily been considered in systems & control theory ( Hinrichsen 

and Pritchard, 2005; Sontag, 1998 ) as a tool for understanding the 

stability (or otherwise) of switched systems — typically difference 

or differential equations which are governed by multiple distinct 

operating modes. We refer the reader to, for example, Liberzon 

and Morse (1999) or Lin and Antsaklis (2009) and the references 

therein, for further background on switched systems and common 

Lyapunov functions. 

Here we present a necessary condition for DDG for two classes 

of deterministic discrete-time (difference equation) models of pop- 

ulations with a discrete-patch spatial structure. To summarise our 

results briefly, when the patch dynamics (which are governed by 

a set of matrices in the linear case) admit a certain common Lya- 

punov function, then DDG is not possible for any dispersal struc- 

ture or parameters and consequently, the model predicts asymp- 

totic decline of the population to extinction. The motivation for our 

study is that, we posit, describing analytically the onset of DDG as 

a function of the model parameters is often intractable — although 

in the sequel we suggest how perturbation tools from robust con- 

trol theory may play a role. When the dynamics on each patch are 

assumed to be governed by a linear model (of the form (1.1) when 

no dispersal is present); testing for DDG amounts to computing 

eigenvalues of the dispersal-coupled system which is numerically 

straightforward, at least for low-dimensional problems. However, 

such an approach does not provide much insight into the relation- 

ships between patch dynamics and structure, dispersal and the on- 

set of DDG. Moreover, computing eigenvalues for large problems 

may be often computationally intensive, especially to fully traverse 

all possible parameter values. The readily checkable “common Lya- 

punov function” test for DDG partially obviates the requirement for 

such calculations. Our approach follows the spirit of Elragig and 

Townley (2012) , although we demonstrate that the notion of com- 

mon quadratic stability used there is not the correct notion for 

testing for DDG. Instead a notion of common linear stability is re- 

quired. 

One motivation for the present line of enquiry is that the nec- 

essary condition for DDG to be possible imposes conditions on the 

life-histories of metapopulations. For example, DDG is not possi- 

ble in models where the patch dynamics are sufficiently “similar”

(as such sets of matrices admit a common linear Lyapunov func- 

tion). Additionally, for the dispersal models we consider, DDG is 

only possible when at least one patch is “reactive”, meaning that 

certain stage-classes must exhibit short-term (transient) popula- 

tion growth ( Ezard et al., 2010; Hastings, 2004; Stott et al., 2011 ). 

Pertinent to models for dispersal, and underpinning our mathe- 

matical approach, is the fact that they are instances of positive dy- 

namical systems — dynamical systems which leave a positive cone 

invariant. Possibly the most natural positive cone is the nonnega- 

tive orthant in real n -dimensional Euclidean space. Positive dynam- 

ical systems are well-studied objects, motivated by their preva- 

lence in models arising in a diverse range of fields from biology, 

chemistry, ecology and economics to genetics, medicine and en- 

gineering ( Haddad et al., 2010 ). An essential feature is that their 

state-variables, typically modelling abundances or concentrations, 

are necessarily nonnegative. The theory of linear positive dynam- 

ical systems is rooted in the seminal work of Perron and Frobe- 

nius in the early 1900s on nonnegative matrices (for a recent treat- 

ment see, for example, Berman and Plemmons (1994 , Chapter 2)). 

Briefly, techniques such as comparison or monotonicity arguments 

are applicable when working with positive dynamical systems; ar- 

guments which need not hold in more general settings. Common 

linear Lyapunov functions for both discrete- and continuous-time 

positive systems have been considered in, for example, Hinrichsen 

and Plischke (2007) , Knorn et al. (2009) and Fornasini and Valcher 

(2010 ; 2012) (and the references therein). Although there is some 

partial overlap between the techniques used in these papers and 

here, we have quite different emphases and potential applications. 

A criticism of the model (1.1) is its linear structure or, bio- 

logically, its density-independence, which neglects any potential 

crowding, competition or Allee effects ( Courchamp et al., 2008 ), 

and allows for unbounded exponential growth. Therefore, we also 

derive a necessary condition for DDG in the case where each 

patch has dynamics governed by a non-linear model. The mod- 

els used here are known in systems & control theory as Lur’e (or 

Lurie) systems. Their name is attributed to the Soviet scientist and 

scholar Anatolii I. Lurie, one of the first, but by no means only, 

authors to study them, and who made significant early contribu- 

tions to their development. In a biological context, these models 

allow both linear and non-linear vital rates, and exhibit a wider 

range of dynamic behaviour than linear models. Much attention 

has been devoted in the control theory literature to the study 

of Lur’e systems including, but not restricted to, Liberzon (2006) , 

Jayawardhana et al. (2011) and Vidyasagar (2002) . The dynamics 

of biologically motivated Lur’e systems have been addressed in, for 

example, Townley et al. (2012) , Rebarber et al. (2011) , Smith and 

Thieme (2013) , Franco et al. (2014) and Eager et al. (2014b ), see 

also particularly Eager (2016) for a helpful and informative dis- 

cussion. As with the linear case, providing analytic conditions in 

terms of the model parameters for when DDG occurs in stage- 

structured non-linear models with a discrete patch structure is, at 

best, very specific to each example and, at worst, intractable. How- 

ever, by appealing to absolute stability results from linear dissipa- 

tivity theory ( Haddad and Chellaboina, 2005; Haddad et al., 2003 ), 

we present a necessary condition for DDG again in terms of the 

non-existence of a candidate common linear Lyapunov function. 

Qualitatively the same results as those in the linear case apply. 
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